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The paper presents an architecture for distributed control of multi-robot systems with
an integrated fault detection, isolation, and recovery strategy. The proposed solution is
based on a distributed observer-controller schema where each robot, by communicating
only with its direct neighbors, is able to estimate the overall state of the system; such
an estimate is then used by the controllers of each robot to achieve global missions
as, for example, centroid and formation tracking. The information exchanged among
the observers is also used to compute residual vectors that allow each robot to detect
failures on anyone of the teammates, even if not in direct communication. The proposed
strategy considers both recoverable and unrecoverable actuator faults as well as it
properly manages the possible activation of reactive local control behaviors of the
robots (e.g., the activation of obstacle avoidance strategy), which generate control inputs
different from those required by the global mission control. In particular, when the robots
are subject to recoverable faults, those are managed at a local level by computing a
proper compensating control action. On the other side, when the robots are subject to
unrecoverable faults, the faults are isolated from anyone of the teammates by means of a
distributed fault detection and isolation strategy; then, the faulty robots are removed from
the team and the mission is rearranged. The proposed strategy is validated via numerical
simulations where the system properly identifies and manages the different cases of
recoverable and unrecoverable actuator faults, as well as it manages the activation of
local reactive control in an integrated case study.

Keywords: networked robots, multi-robot systems, fault-tolerant control, distributed control, fault detection

1. INTRODUCTION

Networked multi-robot systems pose challenging problems due to the need of integrating and
controllingmultiple entities to achieve a common objective. The integration among the robots, often
performed via a communication network, allows the cooperation and the coordination of multiple,
sometimes heterogeneous, nodes and it may allow to accomplish tasks otherwise impossible for a
single robot.

Communication and control architectures for multi-robot systems may span from centralized
to distributed architectures. In the first case, one node (e.g., one of the teammates) is able to
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communicate with all the other nodes and to take decision for
the overall team. However, limited communication capabilities,
in term of ranges or bandwidth, and limited computational power
could make impossible both the communication among all the
robots and the adoption of a centralized control strategy. More-
over, the central unit may represent a weakness in terms of
reliability since its failure may compromise the overall system.

In distributed systems [see, for example, Bullo et al. (2009)
and Mesbahi and Egerstedt (2010)], each robot communicates
only with a subset of its teammates and it must take its own
decisions only on the base of the received information and of the
data from local sensors. Distributed control strategies for multi-
robot systems are often based on the so-called consensus task
(Olfati-Saber et al., 2007) where, on the basis of only neighbor-
to-neighbor information exchange, the robots are required to
reach an agreement on a common value regarding a specific
variable, exogenous or depending on the state of the single robot
(Ren and Beard, 2008). The consensus problem has been mostly
investigated for systems characterized by a first-order integrator
(Olfati-Saber and Murray, 2004; Cao et al., 2008), or a second-
order integrator (Hong et al., 2008; Yu et al., 2010), but someworks
involving systems with high-order dynamics are also present in
the literature (Tuna, 2008; Wang et al., 2008). More in general, the
problem of distributed control of multi-robot systems is aimed
at achieving a global task (e.g., controlling the geometrical cen-
troid and formation of a team of mobile robots) using only local
information and interactions. In Belta and Kumar (2004), a par-
tially decentralized algorithm is proposed to control the network
centroid, the variance and the orientation of the system. Many
approaches adopt decentralized observers in order to estimate the
collective behavior, as in Smith andHadaegh (2007) where a linear
state-feedback control is proposed, or as in Yang et al. (2008)
where such an estimate, in conjunction with a local controller, is
adopted to minimize a cost function depending on the state of the
whole system and aimed at controlling the robots’ formation. An
observer-controller scheme for the distributed tracking of time-
varying global task variables has been developed in Antonelli et al.
(2013, 2014). Time-varying formation control problems for gen-
eral linear multiagent systems with switching directed topologies
have been recently studied in Dong and Hu (2016).

The size of distributed robotic systems may be large and, con-
sequently, the probability of failures of some of the teammates
may increase. Despite distributed systems present a potential
robustness to faults, the failure of one or more robots, if not
properly handled, might jeopardize the task execution. Thus, fault
detection and isolation (FDI) strategies become more and more
important. Indeed, the detection of faulty robots may allow to
exploit the intrinsic redundancy of multi-robot systems in such
a way to accomplish the assigned tasks also in the case of failure
of one or more units. To the aim, suitable fault accommodation
strategies could be considered to correctly handle this situation.
Several FDI strategies for single unit systems both in continu-
ous (Zhang et al., 2002) or discrete-time (Caccavale et al., 2013)
have been proposed in the literature, but only in the last years
the fault diagnosis for multi-robot systems has been object of
wider attention from the research community. In Wang et al.
(2009), a centralized approach is presentedwhere a central station,

aimed at detecting and isolating faults over the whole system,
collects information about actuators and sensors coming from
each robot. A comparison between a centralized (with a cen-
tral unit collecting all the information), semi-decentralized (with
information exchange only between neighboring robots), and
fully decentralized (in which each robot only knows its own
state) FDI approaches is presented in Meskin and Khorasani
(2009). Observer-based decentralized solutions for detecting and
isolating faults in interconnected subsystems are presented in
Ferrari et al. (2009) and Zhang and Zhang (2012) where a bank
of local adaptive observers, using only measurements and infor-
mation from neighboring subsystems, are proposed. Observer-
based approaches for overlapping linear systems can be found
in Stankovic et al. (2010) where local observers are adopted to
detect faults on the non-overlapping parts, while a consensus-like
strategy is adopted for the overlapping parts.

Usually, distributed FDI schemes allow the detection of faults
involving the same robot or its direct neighbors, namely, a direct
communication between the faulty teammate and the detecting
robot is required. For example, the work in Davoodi et al. (2014)
presents a FDI approach for distributed and heterogeneous net-
worked systems where each robot can detect and isolate not only
its own faults but also the faults of its direct neighbors. Such limit
is overcome in Arrichiello et al. (2015), in which we proposed a
distributed FDI algorithm for networked robots where each robot
is able to detect faults occurring on any other teammate, even if
not in direct communication. In particular, the FDI solution in
Arrichiello et al. (2015) builds on a distributed controller-observer
schema presented in Antonelli et al. (2013, 2014) where, by means
of a local observer, each robot, modeled with a continuous first-
order integrator dynamics, estimates the overall state of the team
and uses such an estimate to compute its local control input to
achieve global tasks. Such approach is extended in Arrichiello
et al. (2015) where the same information exchanged by the local
observers is used to compute residual vectorswhose aim is to allow
the detection and the isolation of actuator faults occurring on
any robot of the team. A recovery strategy aimed at removing the
faulty robot from the team, based on the estimate of themaximum
detection time, was developed and presented in Arrichiello et al.
(2014a,b), while in Arrichiello et al. (2014c) we extended the strat-
egy also to manage local reactive controls on board each robot to
handle possible emerging situations as, for example, the presence
of unexpected obstacles. In Marino and Pierri (2015) and Marino
et al. (2015), we consider a multi-robot system characterized by a
more general and discrete-time linear dynamics.

In this work, we extend the conference papers (Arrichiello
et al., 2014a,b,c) by presenting a unified distributed fault-tolerant
control (DFTC) approach composed of a distributed observer-
controller strategy to achieve global mission, of a fault detection,
identification, and recovery (FDIR) strategy to manage unrecov-
erable faults, of a local fault estimator to accommodate recov-
erable faults; moreover, the proposed architecture results robust
to the activation of local behaviors not included in the global
control strategy. Furthermore, with respect to those conference
papers, here we provide further analytical details, we consider the
case of noisy state measurements, and we improve the numeri-
cal validation by providing an integrated case study concerning
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multi-robot formation control where recoverable/unrecoverable
faults and activation of local reactive behavior occur.

1.1. Distributed Fault-Tolerant Control
Architecture
The architecture of the Distributed Fault-Tolerant Control
approach is depicted in Figure 1, and it consists of the following
blocks:

• Observer Block: Each robot runs a consensus-based observer
that uses only local information and a suitable vector received
from the direct neighbors to estimate the state of the overall
system.

• Controller Block: Each robot computes the control input to
achieve a global mission on the base of a state-feedback control
law that uses the local estimate of the overall system state
performed by the observer block.

• Local Supervisor Block: A local supervisor might activate a
reactive control to manage emergency situations, as obstacle
avoidance, that are not taken into consideration by the global
mission controller.

• FDIR Block: Using the same information exchanged by the
observer block for the overall state estimation, each robot com-
putes a set of residual vectors that are sensitive to faults affecting
anyone of the robots, even if not in direct communication. The
residual vectors are used to detect and isolate faulty robots by
considering a set of adaptive thresholds, defined on the basis
of the residual dynamics. After the faulty robots have been
detected and isolated, they are removed by the team referring
to a decentralized recovery policy based on the estimate of the
maximum detection time.

• Local Fault Estimator Block: Each robot runs a local estimator to
detect faults and, possibly, to try accommodate them at a local
level.

The paper is organized as follows. Section 2 summarizes some
basic notation of the vectors used in the rest of the paper. Section
3 introduces the modeling of the single robot, of the collective
system, and of the intra-robots communication. Section 4 presents

the decentralized observer-controller scheme, and it discusses the
convergence analysis of the observer errors. Section 5 describes
the fault detection and isolation algorithm, and the recovery strat-
egy. Section 6 shows the results of numerical simulations and,
finally, Section 7 presents some conclusions and future works.

2. NOTATION

Let us introduce the some basic notation adopted throughout
the rest of the paper. The generic variable relative to the i-th
robot will be denoted as vi, while the corresponding collective
variable, i.e., a stacked vector collecting the variables vi for all the
robots, will be denoted without any subscript/superscript; namely,
v = [vT1 vT2 . . . vTN]T where N is the number of robots. The
estimate of collective variable v locally made by the i-th robot is
denoted as iv̂, while the collection of the estimation vectors of
the different robots is denoted as v̂⋆ = [1v̂T 2v̂T . . . Nv̂T]T. The
estimation error performed by i-th robot is denoted as iṽ = v−iv̂,
while the collection of the estimation errors of the different robots
is expressed as ṽ∗ = [1ṽT 2ṽT . . . nṽT]T. Finally, the vector v*
represents v⋆ = 1N ⊗ v where 1N is the (N × 1) vector of ones
and ⊗ denotes the Kroneker product operator.

3. MODELING

Let us consider a multi-robot system composed of N robots, each
of them characterized by the following dynamics (i= 1, 2, . . .,N)

ẋi = ui + ϕi(t) + ξi(t, xi), (1)

where xi ∈ℜn and ui ∈ℜn denote, respectively, the i-th robot’s
state and input, ϕi ∈ℜn is an additive actuator fault term that
is zero in healthy conditions and ξi(t, xi)∈ℜn is a term col-
lecting the model uncertainties and disturbances. The following
assumptions on the single robot’s model hold:

 . Themodel uncertainties ξi(t, xi) are assumed to
be norm bounded by a known constant term ξ, assumed equal for
each robot, i.e.,

||ξi(t, xi)|| ≤ ξ, ∀t, ∀i = 1, 2, . . . ,N. (2)

FIGURE 1 | Overall schema of the distributed fault-tolerant control strategy.
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 2. Each robot has direct access only to a noisy
measure xm,i of its own state, i.e.,

xm,i = xi + ηi < +∞, (3)

where ηi ∈ ℜn is the measurement additive noise supposed to be
norm bounded by a known positive scalar η, assumed equal for each
robot, i.e.,

||ηi(t)|| ≤ η < +∞ ∀t, ∀i = 1, 2, . . . ,N. (4)

Let us define the collective variables of the system as the vectors
collecting the variables of all the robots of the network, as

x = [xT1 xT2 . . . xTN]
T ∈ ℜNn

u = [uT1 uT2 . . . uTN]
T ∈ ℜNn

ϕ = [ϕT
1 ϕT

2 . . . ϕT
N]

T ∈ ℜNn

ξ = [ξT
1 ξT

2 . . . ξT
N]

T ∈ ℜNn

η = [ηT
1 ηT

2 . . . ηT
N]

T ∈ ℜNn. (5)

On the basis of the single robot dynamics [equation (1)], the
collective dynamics is expressed as

ẋ = u + ϕ + ξ, (6)

while the collective noisy measurement of the system state is

xm = x + η. (7)

3.1. Communication Modeling
As common in multi-robot systems [see, e.g., Godsil and Royle
(2001), Fax and Murray (2004), and Olfati-Saber and Murray
(2004)], the information exchange among the robots can be
modeled referring to graph theory approaches. Indeed, the robot
network can be described as a graph G(E , V) characterized by
its topology, where V is a set of indexes labeling the N vertices
(nodes) representing the robots, and E = V × V is the set of
edges (arcs) representing the communications between robots;
i.e., robot i and robot j can communicate only if there is an arc
between node i and node j. Thus, the i-th robot receives infor-
mation only from its neighbors Ni = {j ∈ V : (j, i) ∈ E}. The

cardinality ofNi is the in-degree of node i, i.e., di = |Ni| =
N∑
j=1

aij.

Moreover, the cardinality of the set of nodes receiving information

from node i represents the out-degree of node i, i.e., Di =
N∑

k=1
aki.

If all the communication links among the robots are bi-directional,
the graph is called undirected (i.e., (i, j)∈E ⇒ (j, i)∈E) otherwise,
the graph is called directed. An undirected graph is called con-
nected if there is an undirected path between every pair of distinct
nodes. A directed graph is called strongly connected if any two
distinct nodes of the graph can be connected via a directed path,
i.e., a path that follows the direction of the edges of the graph.
A node of a directed graph is named balanced if its in-degree
and its out-degree are equal; a directed graph is called balanced

if each node of the graph is balanced. Any undirected graph is
balanced.

From the mathematical point of view, the graph topology can
be represented by the (N ×N) adjacency matrix

A = {aij} : aii = 0, aij =

{
1 if (j, i) ∈ E
0 otherwise,

where aij = 1 if there exists an arc from vertex j to vertex i.
Adiacency matrix is symmetric in the case of undirect graph.
The communication topology can be also characterized by the
(N ×N) Laplacian matrix (Ren and Beard, 2008; Mesbahi and
Egerstedt, 2010) defined as

L = {lij} : lii =
N∑

j=1,j̸=i

aij, lij = −aij, i ̸= j.

The Laplacian matrix has some useful properties that make it
very popular in the field of multi-robot systems and that will be
exploited in the following paper.More in detail, all the eigenvalues
of the matrix L have real parts equal to or greater than zero (i.e.,
Re(λi)≥ 0, ∀i); moreover, L exhibits at least one zero eigenvalue
with the N × 1 vector of all ones 1N as the corresponding right
eigenvector. It holds that rank(L)≤N − 1, in particular it results
rank(L)=N − 1 if and only if the directed graph is strongly
connected. The N eigenvalues of L can be ordered such that

0 = λ1 ≤ Re(λ2) ≤ . . . ≤ Re(λN);

thus, Re(λ2) is greater than zero if and only if the graph is strongly
connected; for this reason, λ2 is defined as the algebraic connec-
tivity of the graph. For a balanced directed graph (and, thus, for an
undirected graph), 1N is also a left eigenvector of L, i.e., 1TNL = 0TN.
Finally, if the graph is undirected, the Laplacian is symmetric and
positive semidefinite.

The following assumptions about the communication hold:

• each robot does not know the topology of the overall commu-
nication graph but it only knows who are its neighbors.

• the graph topology is assumed fixed, i.e., there are no commu-
nication links that can appear or disappear over the time.

4. DECENTRALIZED
OBSERVER-CONTROLLER SCHEME

The robots are required to achieve a globalmission, i.e., a mission
depending on the collective state x of the overall team. However,
since the collective state measurement is not available to the
robots, a distributed observer-controller scheme is adopted in
which, for each robot, a local observer provides a local estimate
of the collective state, ix̂; then, the controller computes the robot
input in a pseudo-centralizedmanner on the base of the estimated
collective state (Antonelli et al., 2013, 2014; Arrichiello et al.,
2015).

In addition to the global mission, each robot must achieve
also local (reactive) tasks to take into account unexpected events
such as the presence of obstacles along its path. The switching
between global behavior and reactive behavior is handled by a
Local Supervisor according to the current scenario.
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4.1. Nominal Control Input
The control input of the i-th robot has the following form

ui = αi,0ug,i +
mi∑
k=1

αi,kul,i,k = αi,0ug,i + ul,i, (8)

where ug,i(ix̂) is the control input that allows to achieve the
global task, depending on the estimate of the collective input,
while ul,i,k(xi,ix̂) (k= 1, . . .,mi) are a set of mi local reactive
control inputs, and ul,i =

∑mi
k=1 αi,kul,i,k. The parameters αi,h

(h= 0, . . .,mi) are scalar gains such that:

• αi,k = 0 or 1, ∀t > 0, ∀k = 0, 1, . . . ,mi;

•
mi∑
k=0

αi,k = 1;

in other words, at each time instant only one of them is 1 and all
the others are equal to 0. Thus, the input terms on the right side of
equation (8) are mutually exclusive control inputs, and each robot
selects the value of gains αi,h on the basis of its own state and of
the external environment.

4.1.1. The Global Mission Controller
In the proposed approach, the global objective for the team of
robots is expressed via a task function σ ∈ ℜp depending on the
collective state as

σ = Jx, (9)

where J ∈ ℜp×Nn is a constant matrix; thus,

σ̇ = Jẋ. (10)

A common example of global tasks of this form is that of
assigning desired time-varying references to the team centroid
and the relative formation. In this case, the task function becomes

σ =
[
σ1
σ2

]
=
[
J1
J2

]
x = Jx, σ̇ = Jẋ, (11)

where J ∈ ℜNn×Nn, σ1 and σ2 are the centroid and formation
task functions defined as:

σ1(x) =
1
N

N∑
i=1

xi = J1x, (12)

with J1 ∈ ℜn×Nn the corresponding Jacobian matrix (Antonelli
et al., 2013);

σ2(x) =
[
(x2 − x1)T . . . (xN − xN−1)T

]T
= J2x, (13)

with J2 ∈ ℜ(N−1)n×Nn the corresponding Jacobian matrix
(Antonelli et al., 2013). A centralized solution for such kind of
global task can be obtained by computing the global collective
input ug as

ug = u(t, x) = J† [σ̇d + kcσ̃(x)] , (14)

where σd is the desired value of the task function, σ̃(x) = σd −
σ(x) is the task error, J† is the pseudo-inverse of the Jacobian
matrix, and kc is a constant positive gain.

In a distributed scenario, since the single robots do not know
the collective state of the system, each of them uses its collective
state estimate ix̂ in order to compute an estimate of the collective
input as

iûg = u(t,ix̂) = J†
[
σ̇d + kciσ̃(ix̂)

]
, (15)

where iσ̃(ix̂) = σd − σ(ix̂) is the estimate of the task error.
Then, the robot i computes its own input ug,i(ix̂) in equation

(8) selecting the relative component from iûg, i.e.,

ug,i = Γi
iûg, (16)

where Γi is the (n×Nn) selection matrix that extracts the com-
ponents of the i-th robot from a collective vector

Γi =
{
On · · · In︸︷︷︸

ith node

· · · On
}

.

4.1.2. The Local Reactive Behavior
Apart fromcollaboratingwith the teammates to achieve the global
mission, each robot is responsible of its own safety. This means
that it can activate, if necessary, reactive behaviors, e.g., to prevent
obstacles along its path. Reactive behaviors are local control inputs
that are activated and deactivated by a local supervisor depending
only on the robot own state, xi, and on information from onboard
sensors (e.g., cameras, rangefinders, etc.). As an example, in the
presence of an obstacle in the advancing direction, the goal of
the obstacle avoidance reactive task is that of computing an input
ul ,1 aimed at keeping the robot at a safe distance, d> 0, from the
obstacle, whose position, xo ∈ ℜn, can be obtained by onboard
sensors. Therefore, the task function can be written as

σl,1 = ||xi − xo|| ∈ ℜ, σl,1,d = d, J l,1 = r̂T ∈ ℜ1×n,

where J l ,1 is the task Jacobian matrix, and

r̂ =
xi − xo

||xi − xo||

is the unit vector aligned with the obstacle-to-vehicle direction.
According to null space-based behavioral control approach pre-
sented inAntonelli et al. (2008), the obstacle avoidance is obtained
by means of the following expression of ul,1

ul,1(xi, xo) = J†l,1θ1 (d − ||xi − xo||) , (17)

where θ1 is a positive scalar gain. Thus, when an obstacle is
detected by robot i and it is closer than a threshold value, the
local supervisor activates the obstacle avoidance behavior (i.e.,
according to equation (8), it sets αi ,1 = 1 and αi ,0 = 0). Hence,
the input to the robot iwould become ui = ul,1. However, since by
adopting the control input [equation (17)], the global task would
be totally neglected, the local input can be improved by adding
the global task as secondary task, in such a way the robot still tries
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to achieve it while avoiding the obstacle (primary task) (Antonelli
et al., 2008). Thus, equation (17) can be replaced by

ul,1(xi,ix̂, xo) = J†l,1θ1 (d − ||xi − xo||) + N(J l,1)ug,i (18)

where the global input vector ug,1(ix̂) is projected into the null
space of matrix J l ,1 by means of matrix

N(J l,1) = In − J†l,1J l,1 = In − r̂r̂T.

4.2. State Observer
As seen in Section 4.1.1, to compute the global input ug,i, each
robot needs an estimate of the collective state. To this aim, the
decentralized observer first proposed in Arrichiello et al. (2015)
and then modified in Arrichiello et al. (2014c) can be adopted. In
particular, the observer on board the generic robot i-th computes
the estimate of the collective state x as follows

i ˙̂x = ko

∑
j∈Ni

(
jŷ−iŷ

)
+ Πi

(
ym−iŷ

)+iûg + ΓT
i ∆ui, (19)

where y is an auxiliary variable defined as

y = x −
∫ t

t0
u(τ)dτ, (20)

that results useful both for state estimation and for diagnosis
purposes discussed in the following section; ko is a positive scalar
gain; Πi is the (Nn×Nn) matrix defined as Πi = ΓT

i Γi, that
selects only the components of the i-th robot;{

ym = xm −
∫ t
t0
u(τ)dτ

iŷ = ix̂ −
∫ t
t0

(iûg(τ) + ΓT
i ∆ui)dτ

(21)

where t0 is the initial time instant; ∆ui ∈ ℜn takes into account
the possibility to activate the reactive local control and it is
given by

∆ui = (αi,0 − 1) ug,i +
mi∑
k=1

αi,kul,k,i. (22)

 4.1. It is worth highlighting that the definition of ym
makes use of the real input [equation (16)] (global or reactive), while
the estimate iŷ takes into account only the estimated global input iûg
for robots different from i-th and, thanks to the additive term ∆ui,
the real input for the i-th robot. In this way, the reactive behaviors
cannot be confused with faults by other robots in the team, despite
they affect the global mission.

Moreover, the selection matrixΠi allows to select only the i-th
components from global variables as y. This ensures that equation
(19) can be implemented on a distributed system since each robot
only uses variable components locally available.

Let us define the collective estimated variables

x̂⋆ = [1x̂T 2x̂T. . .Nx̂T]
T ∈ ℜN2n

ŷ⋆ = [1ŷT 2ŷT. . .NŷT]
T ∈ ℜN2n

û⋆
g = [1ûg(t,1x̂) 1ûg(t,2x̂). . .Nûg(t,Nx̂)] ∈ ℜN2n, (23)

and the collective vectors

x⋆ = 1N ⊗ x ∈ ℜN2n

y⋆ = 1N ⊗ y ∈ ℜN2n

u⋆ = 1N ⊗ u ∈ ℜN2n

η⋆ = 1N ⊗ η ∈ ℜN2n

ξ⋆ = 1N ⊗ ξ ∈ ℜN2n

ϕ⋆ = 1N ⊗ ϕ ∈ ℜN2n

∆u⋆ = [(ΓT
1∆u1)

T
(ΓT

2∆u2)
T
. . . (ΓT

N∆uN)T]
T

∈ ℜN2n, (24)

where ⊗ denotes the Kronecker product operator. By taking
into account equations (19), (23), and (24), the collective state
estimation dynamics is
˙̂x
⋆

= −koL⋆ŷ⋆+koΠ⋆ỹ⋆+koΠ⋆η⋆+û⋆
g +∆u⋆+ξ⋆+ϕ⋆, (25)

where L⋆ = L ⊗ INn, ỹ⋆ = y⋆ − ŷ⋆ and

Π⋆ = diag {[Π1 . . .ΠN]} . (26)

The dynamics of the collective state estimation error x̃⋆ =
x⋆ − x̂⋆ is given by

˙̃x⋆
= −koL⋆ỹ⋆ + (u⋆ − u⋆

g ) + ξ⋆ + ϕ⋆ − ∆u⋆. (27)

In the previous works (Arrichiello et al., 2014c, 2015), it has
been proven that with the observer [equation (25)], in the absence
of faults, measurement noise, and model uncertainties, the collec-
tive state estimation error x̃⋆ exponentially converges to the origin
if no robots are adopting a reactive control (i.e., αi,k = 0, ∀k ̸= 0
in equation (8) and ∀i).

To prove the convergence of x̃⋆, the exponential convergence
to the origin of ỹ⋆ is first proven by the following theorem

 1. In the presence of a strongly connected directed
communication graph (or connected undirected graph) and in the
absence of faults (ϕ= 0),measurement noise, andmodel uncertain-
ties (η =ξ = 0), ỹ⋆ is exponentially convergent to the origin with
the observer [equation (25)], independent from the local control
input, ui (i= 1, . . ., N), applied by the robots. Furthermore, in the
presence of bounded measurement noise and model uncertainty, ỹ⋆

is globally uniformly ultimately bounded.
Then, based on the previous theorem, also the convergence of

x̃⋆ in the absence of reactive behaviors is stated by the following.
 2. In the presence of a strongly connected directed

communication graph (or connected undirected graph) and in the
absence of faults (ϕ= 0), measurement noise, andmodel uncertain-
ties (η =ξ = 0), with the observer in [equation (25)], the stacked
vector of the collective state estimation errors x̃⋆ is exponentially
convergent to the origin. Moreover, in the presence of bounded
measurement noise and model uncertainty, x̃⋆ is globally uniformly
ultimately bounded.

The complete proofs of both the theorems can be found in
Arrichiello et al. (2014c) and Arrichiello et al. (2015) and they are
not reported here for the sake of brevity.

4.2.Different from ỹ⋆, in the presence of reactive behav-
iors, the convergence of x̃⋆ to zero cannot be guaranteed even in the
absence of faults and disturbances, since (u⋆ −u⋆

g )−∆u⋆ does not
converge to zero.
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5. FAULT TOLERANT STRATEGY

In this section, we present the proposed strategy to handle recov-
erable and unrecoverable actuator faults occurring on any robot
of the team. In the presence of a fault, the first step is to decide
if the robot objective can be achieved in spite of its occurrence
by opportunely reconfiguring the control input. In this case, it
is possible to classify the fault as recoverable (Staroswiecki, 2008)
(e.g., a bias between the commanded input and the actual one),
and active fault-tolerant strategies can be locally activated by single
robots, that locally modifies the nominal control law [equation
(16)] so as to accommodate the fault by compensating the effects
of the fault on its dynamics. Regarding non-recoverable faults (e.g.,
permanent actuator failure) active strategies are not available, but
inmulti-robot system the intrinsic redundancy can be exploited in
order to define a passive fault tolerance strategy aimed at removing
the faulty vehicle from the team and rescheduling the mission
needs.

5.1. Recoverable Faults: Local Fault
Estimate and Accommodation
In the presence of recoverable faults, an active fault tolerance
approach is pursued, i.e., the nominal control law [equation (8)] is
reconfigured by adding a compensation term, ϕ̂i. Thus, the new
input vector ūi, given by

ūi = ui − ϕ̂i, (28)

is adopted instead of equation (8). In equation (28), ui has the
same form than in equation (8), while the adaptive term ϕ̂i
provides an estimate of the fault, in such a way to compensate its
effect on the robot dynamics.

In order to estimate the fault ϕi, a local state observer is
designed as in Arrichiello et al. (2014b) and Zhang et al. (2013)

żi = ui + K(xm,i − zi), (29)

whereK ∈ ℜn×n is a symmetric and positive definite gainmatrix.
The update law for the fault estimation is given by

˙̂
ϕi(t) = G−1 (ėi(t) + Kei(t)) , (30)

where ei(t)= xi − zi andG ∈ ℜn×n is a symmetric positivematrix
gain to be designed.

 5.1. From equation (30), it can be recognized that the
on-line fault estimator has the following expression

ϕ̂i(t) = G−1

(
ei(t) + K

∫ t

tf,i
ei(τ)dτ

)
, (31)

where tf,i is the fault occurrence instant. The integral term allows
to achieve an asymptotic estimate of a constant fault while, in the
presence of time-varying faults, it can be proven that the estimation
error is bounded.

From the robot dynamics [equation (1)] and the new control
law [equation (28)] with the update law [equation (30)], it holds

ėi(t) = −Kei+ϕi−ϕ̂i−Kηi+ξi = −Kei+ϕ̃i−Kηi+ξi, (32)

where ϕ̃i = ϕi − ϕ̂i is the fault estimation error. In the absence
of faults, it can be easily seen that, in the absence of measurement
noise ηi and disturbances ξi, the estimate ϕ̂i is zero, provided
that the initial observer error is zero. On the other side, in the
presence of measurement noise and disturbances, the estimate ϕ̂i
is different from zero even in the absence of faults and converges
to Kηi −ξi.

By introducing the collective vectors of errors e =
[eT1 , . . . , eTN]

T ∈ ℜNn and fault estimations ϕ̃ = [ϕ̃T
1 , . . . , ϕ̃

T
N]

T ∈
ℜNn, from equations (30) and (32) it holds

ė = −(IN ⊗ K)e + ϕ̃ − (IN ⊗ K)η + 1N ⊗ ξ, (33)
˙̃
ϕ = ϕ̇ − IN ⊗ G−1 (ė + e) . (34)

As reported in Section 4.2, the estimation error of the collective
state coming from observer [equation (25)], without local fault
estimation [equation (30)], is exponential convergent to zero in
the absence of faults, disturbances, and measurement noise and
under the assumption of a connected undirected graph, while in
the presence of bounded disturbances andmeasurement noise, x̃⋆

is globally uniformly ultimately bounded (Arrichiello et al., 2014b,
2015).

In the presence of a recoverable fault and the adaptive fault
observer [equation (29)] with the update law [equation (30)],
it has been proven in Arrichiello et al. (2014b) that, under the
assumptions of connected undirected communication graph and
fault velocity bounded with a known bound, the estimation errors
ỹ⋆, x̃⋆, and ϕ̃ are all uniformly ultimately bounded, as well as the
task-tracking errors σ̃l (l= 1, 2). Here, the proof is not reported
for the sake of brevity.

5.2. Non-Recoverable Faults
In the presence of non-recoverable faults, the intrinsic redundancy
of a multi-robot system is exploited in order to accomplish the
mission in spite of the faulty teammates. To this aim, a passive
fault tolerance strategy is designed aimed at removing the faulty
robots from the team, and at allowing the remaining vehicles to
reconfigure themselves. To this purpose, a two-stage procedure is
designed: at first, a fault detection and isolation strategy, devel-
oped as in Arrichiello et al. (2015) and reported in the following
for the sake of completeness, is adopted to make each robot able
to detect the occurrence of a fault and to recognize the faulty
vehicle even if not in direct communication; then, the faulty vehi-
cle is removed from the team by suitably resizing the exchanged
vectors.

5.2.1. Fault Detection and Isolation
In order to detect the occurrence of a fault and isolate the faulty
vehicle, let us define the following residual vector for the i-th robot
(Arrichiello et al., 2015)

ir =
∑
j∈Ni

(
jŷ−iŷ

)
+ Πi(ym − ŷi); (35)

it is worth noticing that the computation of the above quan-
tity does not require additional information exchange since it
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makes use of the same terms used by the state observer [equation
(19)]. The vector ir can be seen as a stacked vector, i.e., ir =
[irT1 irT2 . . . irTN]

T ∈ ℜNn, where each component irk ∈ ℜn

represents the residual computed by robot i relative to robot k
and allows the robot i to monitor the healthy state of robot k.
After some algebraic manipulations [see Arrichiello et al. (2015)
for details], it is possible to rewrite the residual component irk as
the sum of two contributions: the first term, ihk, depending on the
observer dynamics and on the presence of noise and disturbances;
the second term, if k, depending on the fault ϕk, i.e.,

irk = ihk + if k, (36)
with
ihk = ΓiΠkη + ΓiL⋆

k

[
e−koL̃

⋆
k tỹ⋆

k (0)

+
∫ t

0
e−koL̃

⋆
k (t−τ)(1N ⊗ ξk(τ) − koΠkη(τ)) dτ

]
(37)

if k = ΓiL̃
⋆
k

∫ t

0
e−koL̃

⋆
k (t−τ) (1N ⊗ ϕk(τ)) dτ, (38)

where vector ỹ⋆
k = [1ỹTk . . . NỹTk ]

T ∈ ℜNn collects the estimation
errors iỹk of all the observers, and L̃⋆

k = L ⊗ In + Πk.
From equations (37) to (38), it can be argued that each residual

component irk, i= 1, 2, . . .,N, is sensitive only to fault occurring
on robot k and is insensitive to all the other faults [see Arrichiello
et al. (2015) for details]. Thus, a fault ϕk affecting the robot k is
detected and isolated by the robot i if{

∃t > tf : ||irk(t)||>iµk(t)
∀l ∈ (1, 2, . . . ,N), l ̸= k, ∀t > 0, ||irl(t)||≤iµl(t)

(39)

where tf > 0 is the instant at which the fault occurs and iµj(t)
(∀i,j) are suitable adaptive thresholds. The use of thresholds is
necessary to avoid false alarms since, due to the measurement
noise and model uncertainties, the residuals are always different
from zero even in the absence of faults. In Arrichiello et al. (2015),
the following expression for iµk has been derived

iµk(t) =
(√

ndi+iδk

)(
||ỹ⋆

k (0)||κe
−λt

+
κ
(
koη +

√
Nξ
)

λ

(
1 − e−λt

))
+iδkη, (40)

where iδk is 1 if i= k and 0 otherwise, η and ξ are the bounds
defined in equations (2) and (4), while κ an λ are positive scalars
such that

||e−koL̃
⋆
k t|| ≤ κe−λt, (41)

that always exist since −koL̃
⋆
k is Hurwitz.

 5.2. It is worth noticing that, in the presence of a
recoverable fault on robot l, residuals irl, i= 1, 2, . . .,N, can exceed
their threshold during the transient phase needed to the adaptive
term ϕ̂l in equation (30) to converge to the fault. To avoid these false
alarms, the decision about a fault can be taken only if the thresholds
is exceeded for a certain time window. This is a quite standard
approach in decision-making scheme design, see, e.g., Pierri et al.
(2008) for further details.

5.2.2. Fault Recovery via Exclusion of the Faulty
Vehicle
In order to accomplish the team mission in spite of the presence
of a non-recoverable fault, the faulty vehicle must be excluded
from the team and the task function referencesmust be replanned.
The adopted detection and isolation strategy allows each robot to
isolate the faulty teammate but, since each robot detects the fault
asynchronously from each other, the problem is to determine the
time instant from which the faulty vehicle must be excluded.

More in detail, the exclusion of a faulty vehicle requires each
robot to change the dimension of all the involved variables; that is,
each healthy robot must resize the estimate of the collective state
vector (ix̂), the input vector (iû), and the auxiliary variable vector
(iŷ) that is exchangedwith the neighbors. The vectors’ dimensions
become (N− 1)n instead of Nn.

Since the detection time instant t in equation (39) is different for
each robot, problems can arise if the vector resizing is not synchro-
nized. For example, let us suppose that the ith vehicle has detected
a fault on robot lth (i.e., ||irl|| exceeds the thresholds iµl) at time
ti, and it resizes the vector iŷ to be sent to its neighbors. Supposing
that one or more of these neighbors has not yet detected the fault,
they would receive a reduced size vector from the neighbor i but
they have not any information about the faulty teammate, so they
do not know which components to remove from their collective
state estimate. To avoid this issue, all the robots must have already
detected and isolated the faulty vehicle before starting to exchange
the reduced size vector. To this purpose, let us define the time itd
as the first instant at which ||irl||>iµl in equation (39), i.e.,

itd = min
t

{t > 0} : ||irl(t)||>iµl(t).

and the detection delay of robot i, i∆td = itd − tf, as the time
occurring from the fault occurrence and its detection/isolation by
vehicle ith.

Based on the previous considerations, the following steps for
removing the faulty robot have to be developed:

• each robot estimates the maximum detection delay, i.e.,

∆td,max = maxi=1,...,N
i∆td, (42)

• the first robot that detects the fault occurrence sends the
reduced size vectors starting from time jtd +∆td,max,

• the other robots, once received the reduced-order vector jŷ,
have already complete knowledge about the faulty robot and
can resize correctly their own estimates.

In sum, the resize of the estimates of the collective variables is
possible after the time instant

tr = min
i

itd + ∆td,max. (43)

Thus, the problem is how to get a reliable estimate of ∆td,max.

5.2.3. Estimate of the Maximum Detection Delay
In order to estimate ∆td,max, a detection time analysis should be
performed. In general, the detection time depends both on the
fault dynamics and on the residuals dynamics. First of all, let
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us consider, on the base of equation (36), that the part of the
residual not depending by the fault is below its threshold, i.e.
||ihk||≤iµk, and thus, in the presence of a fault, the following chain
of inequalities can be written

||irk|| = ||if k+
ihk|| ≥ ||if k|| − ||ihk|| ≥ ||if k||−

iµk(t). (44)

The fault detection by the robot i occurs if ||irk(t)||>iµk(t),
hence, from equation (44) a sufficient detectability condition can
be defined as

∃t > tf : ||if k||−
iµk(t) ≥ iµk(t), (45)

and thus
∃t > tf : ||if k|| ≥ 2iµk(t). (46)

Equation (46) could be adopted to compute an estimate of
the maximum detection time and, thus, of ∆td,max. Such an
estimate will be quite conservative since it is based on a suffi-
cient detectability condition and on thresholds also computed
from conservative bounds. However, since the fault dynamics
is included in equation (46), it is not possible to have an esti-
mate of ∆td,max valid for any possible fault, but a time detection
analysis can be made only for limited class of faults. More in
detail, a possible solution for this problem has been developed in
Arrichiello et al. (2014a), where themaximumdetection delay was
computed for constant faults. By using the same arguments as in
Arrichiello et al. (2014a) and the results in Keliris et al. (2013),
the time detection analysis can be easily extended to other faults
ϕi, provided that ||ϕi|| > ϕ for a time sufficient for the fault
detection, with ϕ opportunely large.

6. NUMERICAL SIMULATIONS

In this section, we present a numerical simulation case study
where a team of 4 robots (N = 4), using the proposed distributed
fault-tolerant control approach, moves in a plane (n= 2) keeping
an assigned formation. During the execution of the mission some
of the robots are subject to recoverable faults, unrecoverable faults,
as well as reactive behavior activations due to obstacle avoidance.

Gains kc, ko, K, and G in equations (15), (19), (29), and (30)
were, respectively, set to kc = 4, ko = 6, K = 3I2, and G= 0.01I2.
The measurement noise ηi in equation (3) is assumed to be
bounded by 0.001m (η = 0.001), while the process noise in
equation (1) is bounded by 0.005m/s (ξ = 0.005 in equation (2)).
The directed network topology shown in Figure 2 is assumed for
the information exchange.

The desired path of the centroid σ1,d(t) is reported in Figure 3
(dashed blue line), while the desired formationσ2,d(t) is constant
and it corresponds to a regular polygon formation of side 0.5m
around the desired centroid. During the simulation, two faults of
different nature are considered. In detail, a recoverable fault occurs
on robot 2 at tf ,2 = 19 s and it has the following expression:

ϕ2 =

[0, 0]T, for t < tf,2

[0.3, −0.35]T(1 − e−
t−tf,2
0.45 ), for t ≥ tf,2.

FIGURE 2 | Communication graph.

FIGURE 3 | Path followed by the robots in the numerical case study.
The dashed green and red lines, respectively, show the paths of healthy
vehicles and vehicles subject to faults; the blue line represents the desired
centroid path. The team configuration at three intermediate instants 22.8, 38,
and 53.2 s is shown (black circles) together with the initial (crosses) and final
(diamonds) configurations.

FIGURE 4 | Fault ϕ2 on vehicle 2 starting at instant tf ,2 = 19 s and its
estimation ϕ̂2.
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FIGURE 5 | Norm of residuals ir1 (i=1, 2, 3, 4) (solid lines) as
calculated by vehicle i and relative to vehicle 1 subject to
unrecoverable fault at tf ,1 = 41.8 s. Dashed green lines are the
corresponding thresholds used for FDIR strategy.

FIGURE 6 | Norm of residuals ir2 (i=1, 2, 3, 4) (solid lines) as
calculated by vehicle i and relative to the vehicle 2 subject to a
recoverable fault at tf ,2 =30.4 s. Dashed green lines are the corresponding
thresholds used for FDIR strategy.

A non-recoverable fault on robot 1, consisting in a complete
stop of the robot, is assumed occurring at tf ,1 = 41.8 s. The vehicle
paths are shown in Figure 3 (green dashed lines for healthy robots
3 and 4, and red lines for robots 1 and 2 subject to faults). Figure 4
shows the components of ϕ2 = [ϕ2,x, ϕ2,y]T and its estimate
ϕ̂2 = [ϕ̂2,x, ϕ̂2,y]

T performed by the local fault estimator on
board robot 2; the figure also shows that, depending on the local
observer gains, the measurement and process noise affects the
fault estimates. In this sense, based on equation (1) the process
noise is seen as a (bounded) fault affecting the robot dynamics.

Figure 5 shows the residuals calculated by each robot of the
team and relative to the faulty robot 1. In detail, the residual norms
||ir1|| (i= 1, 2, 3, 4) (continuous blue lines) and the corresponding
thresholds (dashed green lines) are plotted. The plots also show

FIGURE 7 | Norm of residuals ir3 (i= 1, 2, 3, 4) (solid lines) as
calculated by vehicle i and relative to the healthy vehicle 3. Dashed
green lines are the corresponding thresholds used for FDIR strategy.

FIGURE 8 | Norm of residuals ir4 (i= 1, 2, 3, 4) (solid lines) as
calculated by vehicle i and relative to the healthy vehicle 4. Dashed
green lines are the corresponding thresholds used for FDIR strategy.

that, being the fault unrecoverable, all the residuals are kept below
the corresponding threshold as long as the fault is not affecting the
robot, while the residuals computed by each robot overcome the
thresholds after the fault occurrence even if the faulty robot has
not a direct communication link with all the teammates.

Figures 6–8 show that the residuals relative to other robots,
namely, ||irj|| (i= 1, 2, 3, 4 and j ̸= 1), do not overcome the corre-
sponding thresholds; thismeans that no fault is detected on robots
2, 3, 4. In particular, with regard to robot 2, that is affected by a
recoverable fault after tf ,2 = 19 s, the residuals do not overcome the
threshold since the fault is locally compensated by the controller
according to the strategy in Section 5.1, and it does not need to be
globally detected and recovered.

It is worth noticing from Figure 3 that the robots are also able to
avoid obstacles along their paths via the activation of local reactive
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FIGURE 9 | (Top) Norm of the state estimation error ||||||x̃⋆||||||; (Bottom)
norm of the task errors ||||||σ̃1||||||(green line) and ||||||σ̃2||||||(blue line). Dashed
black lines are in correspondence of activation/deactivation of obstacle
avoidance reactive behavior, occurrence of unrecoverable fault at tf ,1 and
faulty vehicle removal.

FIGURE 10 | Control input ui in equation (1) ∀i.

behaviors, and that, as shown in Figures 5–8, the activation of the
local behaviors do not effect the residual components. Concerning
the FDIR strategy described in Section 5.2.2, Figure 3 shows that,

after the exclusion of robot 1, the formation is rearranged accord-
ing to a regular triangular formation. The maximum detection
time ∆td,max in equation (42) is set to 5 s.

In Figure 9, the norms of the state estimation error ∥x̃⋆∥ (top)
and the task errors ∥σ̃1∥ and ∥σ̃2∥ (bottom) are shown. The figure
shows that these errors growduring the obstacle avoidance and the
fault detection phases and decreases toward a neighborhood of the
origin in normal conditions. Finally, Figure 10 reports the control
input ui (∀i) in equation (1). The top plot is relative to robot 1
that is affected by a non-recoverable fault; thus, the input becomes
zero after the fault occurrence. Concerning the other plots, the
discontinuities on the inputs is due to the faulty robot exclusion
and formation rearrangement.

7. CONCLUSION

In this paper, a distributed fault-tolerant control strategy for net-
worked robots was presented. The proposed approach builds on
a distributed controller-observer architecture, a fault detection,
isolation and recovery strategy for unrecoverable faults, and a
local fault estimation and compensation for recoverable faults.
The proposed approach also results robust to the activation of
reactive behaviors acting at local levels and not included in the
global control strategy.

The proposed architecture allows to manage in an integrated
manner the different issues related to distributed formation con-
trol and fault management, while keeping limited the communi-
cation burden; i.e., the information exchanged among neighbors
for state estimation purposes are also used for fault manage-
ment without further requirements. The approach was success-
fully tested via numerical simulations, and the results of a single
integrated case study involving the occurrence of the different
kinds of faults as well as the activation of reactive behaviors was
presented to validate the approach.

AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct, and intellectual
contribution to the work and approved it for publication.

REFERENCES
Antonelli, G., Arrichiello, F., Caccavale, F., and Marino, A. (2013). A decentralized

controller-observer scheme for multi-agent weighted centroid tracking. IEEE
Trans. Aut. Control 58, 1310–1316. doi:10.1109/TAC.2012.2220032

Antonelli, G., Arrichiello, F., Caccavale, F., and Marino, A. (2014). Decentralized
time-varying formation control for multi-robot systems. Int. J. Robot. Res. 33,
1029–1043. doi:10.1177/0278364913519149

Antonelli, G., Arrichiello, F., and Chiaverini, S. (2008). The null-space-based behav-
ioral control for autonomous robotic systems. J. Intell. Service Robot. 1, 27–39.
doi:10.1007/s11370-007-0002-3

Arrichiello, F., Marino, A., and Pierri, F. (2014a). “A decentralized fault tolerant
control strategy for multi-robot systems,” in Proceedings 19th World Congress of
the International Federation of Automatic Control (Cape Town, South Africa),
6642–6647.

Arrichiello, F., Marino, A., and Pierri, F. (2014b). “Distributed fault detection and
recovery for networked robots,” in IEEE/RSJ International Conf. on Intelligent
Robots and Systems (Chicago, IL), 3734–3739.

Arrichiello, F., Marino, A., and Pierri, F. (2014c). “Distributed fault-tolerant strategy
for networked robots with both cooperative and reactive controls,” in 2014 IEEE
International Conference on Information and Automation (ICIA) (Harbin, China:
IEEE), 677–682.

Arrichiello, F., Marino, A., and Pierri, F. (2015). Observer-based decentral-
ized fault detection and isolation strategy for networked multirobot systems.
IEEE Trans. Control Syst. Technol. 23, 1465–1476. doi:10.1109/TCST.2014.
2377175

Belta, C., and Kumar, V. (2004). Abstraction and control of groups of robots. IEEE
Trans. Robot. 20, 865–875. doi:10.1109/TRO.2004.829498

Bullo, F., Cortés, J., andMartínez, S. (2009).Distributed Control of Robotic Networks.
Applied Mathematics Series. Princeton, NJ: Princeton University Press.

Caccavale, F., Marino, A., Muscio, G., and Pierri, F. (2013). Discrete-time frame-
work for fault diagnosis in robotic manipulators. IEEE Trans. Control Syst.
Technol. 21, 1858–1873. doi:10.1109/TCST.2012.2212196

Cao, M., Morse, A. S., and Anderson, B. D. (2008). Reaching a consensus in
a dynamically changing environment: a graphical approach. SIAM J. Control
Optim. 47, 575–600. doi:10.1137/060657005

Frontiers in Robotics and AI | www.frontiersin.org February 2017 | Volume 4 | Article 211

https://doi.org/10.1109/TAC.2012.2220032
https://doi.org/10.1177/0278364913519149
https://doi.org/10.1007/s11370-007-0002-3
https://doi.org/10.1109/TCST.2014.2377175
https://doi.org/10.1109/TCST.2014.2377175
https://doi.org/10.1109/TRO.2004.829498
https://doi.org/10.1109/TCST.2012.2212196
https://doi.org/10.1137/060657005
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Arrichiello et al. Distributed FTC for Networked Robots

Davoodi, M., Khorasani, K., Talebi, H., and Momeni, H. (2014). Distributed fault
detection and isolation filter design for a network of heterogeneous multiagent
systems. IEEE Trans. Control Syst. Technol. 22, 1061–1069. doi:10.1109/TCST.
2013.2264507

Dong, X., and Hu, G. (2016). Time-varying formation control for general linear
multi-agent systems with switching directed topologies. Automatica 73, 47–55.
doi:10.1016/j.automatica.2016.06.024

Fax, J., and Murray, R. (2004). Information flow and cooperative control of vehicle
formations. IEEE Trans. Automatic Control 49, 1465–1476. doi:10.1109/TAC.
2004.834433

Ferrari, R., Parisini, T., and Polycarpou, M. (2009). Distributed fault diagnosis with
overlapping decomposition: an adaptive approximation approach. IEEE Trans.
Automatic Control 54, 794–799. doi:10.1109/TAC.2008.2009591

Godsil, C., and Royle, G. (2001). Algebraic Graph Theory. Graduate Texts in Mathe-
matics. New York: Springer.

Hong, Y., Chen, G., and Bushnell, L. (2008). Distributed observers design for leader-
following control of multi-agent networks. Automatica 44, 846–850. doi:10.
1016/j.automatica.2007.07.004

Keliris, C., Polycarpou, M. M., and Parisini, T. (2013). A distributed fault detec-
tion filtering approach for a class of interconnected continuous-time nonlinear
systems. IEEE Trans. Automat. Contr. 58, 2032–2047. doi:10.1109/TAC.2013.
2253231

Marino, A., and Pierri, F. (2015). “Discrete-time distributed control and fault diag-
nosis for a class of linear systems,” in IEEE/RSJ International Conf. on Intelligent
Robots and Systems (IROS) (Hamburg, Germany), 2974–2979.

Marino, A., Pierri, F., Chiacchio, P., and Chiaverini, S. (2015). “Distributed fault
detection and accommodation for a class of discrete-time linear systems,” in
Proceeding of the IEEE International Conf. on Information and Automation,
(Lijiang, China), 469–474.

Mesbahi, M., and Egerstedt, M. (2010). Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ: Princeton University Press.

Meskin, N., and Khorasani, K. (2009). Actuator fault detection and isolation for
a network of unmanned vehicles. IEEE Trans. Automatic Control 54, 835–840.
doi:10.1109/TAC.2008.2009675

Olfati-Saber, R., Fax, J., and Murray, R. (2007). Consensus and cooperation in
networked multi-agent systems. Proc. IEEE 95, 215–233. doi:10.1109/JPROC.
2006.887293

Olfati-Saber, R., and Murray, R. (2004). Consensus problems in networks of agents
with switching topology and time-delays. IEEE Trans. Automatic Control 49,
1520–1533. doi:10.1109/TAC.2004.834113

Pierri, F., Paviglianiti, G., Caccavale, F., and Mattei, M. (2008). Observer-based
sensor fault detection and isolation for chemical batch reactors. Eng. Appl. Artif.
Intell. 21, 1204–1216. doi:10.1016/j.engappai.2008.02.002

Ren, W., and Beard, R. (2008). Distributed Consensus in Multi-vehicle Cooperative
Control. Communications and Control Engineering. Berlin: Springer.

Smith, R., and Hadaegh, F. (2007). Closed-loop dynamics of cooperative vehicle
formations with parallel estimators and communication. IEEE Trans. Automatic
Control 52, 1404–1414. doi:10.1109/TAC.2007.902735

Stankovic, S., Ilic, N., Djurovic, Z., Stankovic, M., and Johansson, K. (2010). “Con-
sensus based overlapping decentralized fault detection and isolation,” in Conf.
on Control and Fault-Tolerant Systems (Nice, France), 570–575.

Staroswiecki, M. (2008). On fault handling in control systems. Int. J. Control
Automation Syst. 6, 296–305.

Tuna, S. E. (2008). Synchronizing linear systems via partial-state coupling. Auto-
matica 44, 2179–2184. doi:10.1016/j.automatica.2008.01.004

Wang, J., Cheng, D., and Hu, X. (2008). Consensus of multi-agent linear dynamic
systems. Asian J. Control 10, 144–155. doi:10.1002/asjc.15

Wang, Y., Ye, H., Ding, S., Cheng, Y., Zhang, P., andWang, G. (2009). Fault detection
of networked control systems with limited communication. Int. J. Control 82,
1344–1356. doi:10.1080/00207170802558967

Yang, P., Freeman, R., and Lynch, K. (2008). Multi-agent coordination by decen-
tralized estimation and control. IEEE Trans. Automatic Control 53, 2480–2496.
doi:10.1109/TAC.2008.2006925

Yu, W., Chen, G., Cao, M., and Kurths, J. (2010). Second-order consensus for mul-
tiagent systems with directed topologies and nonlinear dynamics. IEEE Trans.
Syst. Man Cybern. B Cybern. 40, 881–891. doi:10.1109/TSMCB.2009.2031624

Zhang, K., Jiang, B., and Shi, P. (2013). Observer-Based Fault Estimation and
Accomodation for Dynamic Systems. Berlin, Heidelberg: Springer.

Zhang, X., Polycarpou, M., and Parisini, T. (2002). A robust detection and isolation
scheme for abrupt and incipient faults in nonlinear systems. IEEE Trans. Auto-
matic Control 47, 576–593. doi:10.1109/9.995036

Zhang, X., and Zhang, Q. (2012). Distributed fault diagnosis in a class of intercon-
nected nonlinear uncertain systems. Int. J. Control 85, 1644–1662. doi:10.1080/
00207179.2012.696146

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Arrichiello, Marino and Pierri. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org February 2017 | Volume 4 | Article 212

https://doi.org/10.1109/TCST.2013.2264507
https://doi.org/10.1109/TCST.2013.2264507
https://doi.org/10.1016/j.automatica.2016.06.024
https://doi.org/10.1109/TAC.2004.834433
https://doi.org/10.1109/TAC.2004.834433
https://doi.org/10.1109/TAC.2008.2009591
https://doi.org/10.1016/j.automatica.2007.07.004
https://doi.org/10.1016/j.automatica.2007.07.004
https://doi.org/10.1109/TAC.2013.2253231
https://doi.org/10.1109/TAC.2013.2253231
https://doi.org/10.1109/TAC.2008.2009675
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/TAC.2004.834113
https://doi.org/10.1016/j.engappai.2008.02.002
https://doi.org/10.1109/TAC.2007.902735
https://doi.org/10.1016/j.automatica.2008.01.004
https://doi.org/10.1002/asjc.15
https://doi.org/10.1080/00207170802558967
https://doi.org/10.1109/TAC.2008.2006925
https://doi.org/10.1109/TSMCB.2009.2031624
https://doi.org/10.1109/9.995036
https://doi.org/10.1080/00207179.2012.696146
https://doi.org/10.1080/00207179.2012.696146
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive

	Distributed Fault-Tolerant Control for Networked Robots in the Presence of Recoverable/Unrecoverable Faults and Reactive Behaviors
	1. Introduction
	1.1. Distributed Fault-Tolerant Control Architecture

	2. Notation
	3. Modeling
	3.1. Communication Modeling

	4. Decentralized Observer-Controller Scheme
	4.1. Nominal Control Input
	4.1.1. The Global Mission Controller
	4.1.2. The Local Reactive Behavior

	4.2. State Observer

	5. Fault Tolerant Strategy
	5.1. Recoverable Faults: Local Fault Estimate and Accommodation
	5.2. Non-Recoverable Faults
	5.2.1. Fault Detection and Isolation
	5.2.2. Fault Recovery via Exclusion of the Faulty Vehicle
	5.2.3. Estimate of the Maximum Detection Delay


	6. Numerical Simulations
	7. Conclusion
	Author Contributions
	References


