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This study has developed a 3D Smoothed Particle Hydrodynamics (SPH) numerical scheme to reproduce
the transport of rigid bodies in free surface flows (e.g. floods, surface waves). It is based on the Euler–
Newton equations for body dynamics, implemented through the SPH formalism. This scheme has been
coupled to a Weakly Compressible (WC)-SPH model for the main flow, based on the semi-analytic
approach (Di Monaco et al. 2011). The SPH boundary treatment of Adami et al. (2012) has been imple-
mented and adapted to free-slip conditions to model the ‘‘fluid–solid body’’ coupling terms. On the other
hand, the ‘‘solid–solid’’ (‘‘body–body’’ and ‘‘body–frontier’’) interactions are represented by the ‘‘boundary
force particles’’ of Monaghan (2005). This technique has been implemented by introducing some modifi-
cations to represent the impingements of entire bodies (not only isolated particles), even at low velocities.

The new model has been validated on a sequence of 2D and 3D test cases. They involve preliminary tests
both with single and multiple bodies and frontiers, four water entries of falling solid wedges, and the prop-
agation of a 3D dam break front. This is driven by the regular lift of a mobile gate, transports a floating body
(6 degrees of freedom) and impacts two fixed obstacles and several solid frontiers. This last phenomenon
has also been experimentally realized during this study. Validation refers to comparisons vs. measure-
ments, Unsteady Reynolds-Averaged Navier–Stokes (URANS) results, other SPH models, analytical and
theoretical solutions.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Smoothed Particle Hydrodynamics represents a mesh-less
Computational Fluid Dynamics (CFD) technique for free-surface
and multi-phase flow modelling [1–3]. A main advantage of this
method concerns a direct estimation of the position of free surface,
inter-fluid, inter-phase, and fluid–solid interfaces. At the same
time, SPH modelling involves the computation of Lagrangian
derivatives on the Left Hand Sides (LHS) of the fluid dynamics bal-
ance equations, where there is no need to explicitly treat the con-
vective non-linear terms. Furthermore, no computational mesh is
involved and the numerical algorithms are quite simple. So far,
SPH modelling has been explored on several hydraulics application
fields such as floods (e.g. [4,5]), coastal (e.g. [6]) and maritime (e.g.
[7–9]) engineering, fluid–structure interactions (e.g. [10–12]),
biomedical engineering, sloshing phenomena (e.g. [13–15]),
landslide modelling (e.g. [16]), turbomachines (e.g. [17,18]),
accidents (e.g. fluid leakages, [20]), bubble dynamics (e.g. [21]),
magneto-hydrodynamics and astrophysical applications (e.g. [22–
25]),. . .

Besides, SPH technique can simultaneously deal with multiple
body dynamics, as usually developed in astrophysics and solid
mechanics. However, only few SPH models have been conceived
to represent the transport of moving bodies, driven by free surface
flows. The main difficulties arise from the treatment of each of the
multiple 2-way fluid–body and solid–solid (body–body and
body-boundary) interactions. Several application fields could ben-
efit from this modelling, such as floods (river overflows or dam
breaks) and industrial accidents triggered by natural events
(Na-Tech, [26]), with fluid flows transporting solid structures, vehi-
cles, tree trunks, ice floes. . ., or the motion of floating bodies driven
by gravitational surface waves (e.g. floating platforms, buoys,
off-shore and on-shore foundations and structures). In this last
case, the standard approaches often fail as linear and
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second-order wave diffraction theory does not represent highly
non-linear effects associated with extreme waves.

In the following of this introduction, we briefly recall the basis
of the SPH approach, with a particular focus on boundary treat-
ment, and then describe the state-of-the-art of this technique in
modelling rigid solid bodies driven by free surface or confined
flows.

Smoothed Particle Hydrodynamics represents a particle method
(each particle is considered as a computational node), based on an
interpolative approach.

Let us first consider the representation of a generic function f (at

a generic computational point x0) as the convolution integral (over
the infinite space) of the same f, weighted by the Dirac’s delta ðdDÞ:

f ðx0Þ ¼
Z

V1

f ðxÞdDðx� x0Þdx3 ð1:1Þ

Hereafter, the under-bar symbol denotes a vector. SPH approx-
imates (1.1) to represent the functions and derivatives appearing in
the balance equations of fluid dynamics. In fact, SPH considers
convolution integrals over a limited space, the kernel support
Vh(a sphere of radius 2 h, h being the kernel support size). The com-
putational point is represented by the co-moving particle position.
SPH then uses an analytical smoothing/weighting function (or ker-

nel: W or W(x � x0)), [27]), which replaces the Dirac’s delta.
In particular, the SPH approximation in the continuum (integral

SPH approximation hiIÞ of a generic function (f ðxÞ or f) is defined as:

fh iI;x0
¼
Z

Vh

f ðxÞWðx� x0; hÞdx3 ð1:2Þ

Applying the same operator to a generic derivative, computed
along the spatial component xi, the integral SPH approximation
provides the following equation (after integration by parts):

@f
@xi

����
� �

I;x0

¼
Z

Vh

W
@f
@xi

dx3 ¼
Z

Ah

Wfni dx2 �
Z

Vh

f
@W
@xi

dx3 ð1:3Þ

Here n is the unity vector locally normal to the boundary.
The discretization of the volume integral in the last term of (1.3)

will consider fluid particles (called ‘‘neighbouring/neighbour parti-
cles’’) around the computational particle (Section 2). On the other
hand, the surface integral in (1.3) should be computed over the
boundary (Ah) of the kernel support. The representation of this
term is a key point in SPH boundary treatment, for several reasons.
First, the SPH truncation error at boundaries is relevant if we
strictly integrate the surface term in (1.3). Further, imposing
boundary conditions on a surface frontier is not trivial, when start-
ing from a Lagrangian field of non-uniformly distributed moving
particles. Modelling this boundary term is then crucial, as both
(1.2) and (1.3) may be affected by truncation errors at the frontiers
of the fluid domain [28,29], if they are modelled straightforwardly.
In this context, several numerical methods have been proposed
and validated. Some of them are briefly discussed below.

Monaghan [1] and Monaghan and Kajtar [30] define repulsive
forces at the fluid–boundary interface, called ‘‘boundary force par-
ticles’’. Other techniques adopt the so-called ‘‘ghost’’ [5,1] or ‘‘mir-
ror’’ [31] particles, as fictitious neighbouring particles, which lie
outside the fluid domain and complete the truncated kernel sup-
ports at boundaries. A similar technique has been recently devel-
oped by Adami et al. [32], who impose correct boundary no-slip
conditions, even for accelerated fluid–solid interfaces. Di Monaco
et al. [33] numerically developed the semi-analytic approach, as
originally formulated by Vila [34]: this represents a sort of integral
version of the mirror particles of Adami et al. [32], for fixed bound-
aries. On the other hand, Ferrand et al. [35], Mayrhofer et al. [36],
and Ferrari et al. [39] use similar boundary treatments, which rely
on a direct modelling of the surface boundary integrals at the fron-
tiers of the fluid domain, according to a complete and corrected
SPH approximation of a derivative (1.3). Finally, other advanced
models (e.g. [17,19]) use the Arbitrary Lagrangian–Eulerian formal-
ism to write the balance equations of fluid dynamics, whose weak
formulation directly treats boundaries (SPH-ALE approach) and
adopts upwind schemes to improve the SPH spatial accuracy.
These schemes have been also implemented in fully Lagrangian
SPH models (strong formulation of balance equations), especially
to correct the continuity equation (e.g. [37,38]) or estimate pres-
sure at boundaries [39].

At the same time, only few SPH studies have dealt with the
transport of solid bodies driven by free surface or confined flows.
They mainly refer to 2D and single interface interactions. They
are briefly described in the following.

Oger et al. [40] use the ghost particle method to model a 2D
dynamics of a falling wedge into still water. Monaghan et al. [41]
represent the interactions between water surface waves and fixed
cylinders through the use of the boundary force particles. Using the
same technique, Omidvar et al. [42,43] model the fluid–body inter-
action terms to represent a floating body, driven by surface waves
(in 2D and 3D respectively). Adopting the same type of particles,
Kajtar and Monaghan [44] reproduces 2D modular bodies in con-
fined flows and Valizadeh and Monaghan [45] also simulate rigid
mobile frontiers and their interactions with fluid flows. The bound-
ary force particles are still applied by Kajtar and Monaghan [46],
where the authors also use repulsive forces to model solid–bound-
ary interactions. Hashemi et al. [47] represent the transport of 2D
bodies in confined visco-elastic flows, deriving a formulation sim-
ilar to Adami et al. [32] for fluid–solid interactions, but introducing
modifications to increase accuracy and deal with shear stresses.
They also use repulsive forces, defined for body–body impinge-
ments. The same authors represent the transport of 2D bodies in
confined flows in Hashemi et al. [48]. Anghileri et al. [49] model
the 3D impact of a falling parallelepiped on still water coupling a
Finite Element Method code (solid modelling) with an SPH model
for the fluid domain. Finally, Seungtaik et al. [50] directly represent
solid–solid interactions applying the equation which describes the
collision of two rigid bodies in 3D (approximated using a SPH for-
malism) and providing qualitative validations.

In this context, we have developed and validated a 3D SPH
scheme for body transport in free surface flows. We have coupled
it to an SPH model for the main flow, based on the semi-analytic
approach [33]. The formulation of the fluid–body interaction terms
is based on an adaptation of the boundary technique of Adami et al.
[32], whose original formulation was quantitatively validated on
fixed frontiers (2D). Here we implement and apply a variant of it,
in order to model free-slip conditions. Body–body and
body–boundary impingements are represented according to the
boundary force particles, as formulated by Monaghan [1], here
implemented and adapted to treat whole solid bodies (not only
particle impingements), even at low velocities.

The resulting RSE model has been validated using 2D and 3D
reference test cases, where measures, analytical solutions,
theoretical methods, other SPH and Unsteady Reynolds-Averaged
Navier–Stokes (URANS) numerical results are available. In particu-
lar the main test case, a dam break event with 3D body transport,
has also been experimentally realized during this study, at
Basilicata University.

After this introduction (Section 1), Section 2 describes the
numerical model, Section 3 the sequence of validation tests and
Section 4 the overall conclusions.

2. The numerical model

This section describes the main features of the numerical model
here presented, by analysing the balance equations for fluid
(Section 2.2) and body (Section 2.3) dynamics and then the
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2-way interaction terms related to both fluid–body (Section 2.3)
and solid–solid (Section 2.4) interactions.

2.1. SPH approximation of the balance equations of fluid dynamics

The numerical scheme for the main flow refers to a
Weakly-Compressible (WC) SPH model and the semi-analytic
approach for boundary treatment. Its basic features are deeply
described in Di Monaco et al. [33] and here briefly reported.

Let refer to Euler’s momentum and continuity equations, in the

following forms:

dui

dt
¼ � 1

q
@p
@xi
� di3g ¼ � @ p=qð Þ

@xi
� p

q2

@q
@xi
� di3g; i ¼ 1;2;3

dq
dt
¼ �qr � u

ð2:1Þ
where u � u;v ;wð Þ is the velocity vector, p pressure, q the fluid

density, dij Kronecker’s delta, x position and t time. We need to com-
pute them at each fluid particle position using the SPH formalism
and take into account the boundary terms (fluid–frontier and
fluid–body interactions), as described in the following.

Let consider an SPH approximation of (2.1). For this purpose, we
refer to the SPH representation of a generic derivative (1.3) accord-
ing to the semi-analytic approach (‘‘SA’’; [34]):

@f
@xi

� �
SA;0
¼
X

b

f b � f 0ð Þ @Wb

@xi
xb þ

Z
V 0h

f � f 0ð Þ @W
@xi

dx3 ð2:2Þ

This formula represents an approximation of the first equality
in (1.3). The inner fluid domain here involved is filled with
numerical particles to represent the summation in (2.2). At
boundaries, we formally do not truncate the kernel support and
the kernel sphere can partially lie outside the fluid domain. In
other words, the summation in (2.2) is performed over all the
fluid particles ‘‘b’’ (neighbouring particles with volume x) in the
kernel support of the computational fluid particle (‘‘0’’). At the
same time, the volume integral in (2.2) represents the boundary
term, which is a convolution integral on the truncated portion
of the kernel support. In this fictitious and outer volume (V 0h),
we need to define the generic function f (pressure, velocity or
density alternatively).

The semi-analytic approach (‘‘SA’’), as interpreted by Di Monaco
et al. [33], hypothesizes the following linearization and assump-
tions to compute f in V 0h:

f ffi f SA þ
@f
@xi

����
SA

x� x0ð Þ ) @f
@xi

� �
SA

¼
X

b

f b � f 0ð Þ @Wb

@xi
xb

þ
Z

V 0h

f SA
@W
@xi

dx3 þ
Z

V 0h

@f
@xi

����
SA

x� x0ð Þ @W
@xi

dx3 ð2:3Þ

The peculiar ‘‘SA’’ values of the functions and derivatives in V 0h
are assigned to represent a null normal gradient of reduced pres-
sure at a frontier interface (considering uniform density):

pSA ¼ p0;
@p
@xi

� �
SA

¼ �di3g; qSA ¼ q0;
@q
@xi

� �
SA

¼ 0 ð2:4Þ

At the same time, we approximately set free-slip conditions
when estimating velocity at boundaries. The velocity vector is

taken as uniform in the outer part of the kernel support. Here uSA

is decomposed in the sum of a vector normal to boundary uSA;nð Þ
and a tangential vector uSA;Tð Þ. The first is represented as a linear
extrapolation from the computational fluid particle velocity. The
latter is equal to its analogous vector of the same fluid particle
(the subscript ‘‘w’’ refers to a generic frontier):
uSA ¼ uSA;T þuSA;n �u0;T þ 2uw�u0ð Þ �n½ �n

uSA;T �u0;T ;
@ui
@xi

D E
SA
¼0

)
)u�u0 ¼uSA�u0 ¼2 uw�u0ð Þ �n½ �n

ð2:5Þ

We can now write the continuity equation for a Weakly
Compressible SPH model (Einstein’s notation works for ‘‘j’’), using
the semi-analytic approach as a boundary treatment:

dq
dt

� �
0
¼
X

b

qb ub;j � u0;j
� �@W

@xj

����
b

xb þ 2q0

Z
V 0h

uw � u0ð Þ � n½ �nj
@W
@xj

dx3 þ Cs

ð2:6Þ

where Cs is introduced to represent a fluid–body interaction term,
as presented in Section 2.3.

On the other hand, we can analogously derive the approxima-
tion of the momentum equation (the notation hi indicates the
SPH particle – discrete – approximation):

dui

dt

� �
0
¼ �di3g þ

X
b

pb

q2
b

þ p0

q2
0

� �
@W
@xi

����
b

mb þ 2
p0

q0

Z
V 0h

@W
@xi

dx3

� tM

X
b

mb

q0r2
0b

ub � u0ð Þ � xb � x0ð Þ@W
@xi

����
b

� 2tM uw � u0ð Þ �
Z

V 0h

1
r2

0w

x� x0ð Þ @W
@xi

dx3 þ as ð2:7Þ

where as represents a new acceleration term due to the fluid–body
interactions (Section 2.3), mM is the artificial viscosity [1], m the par-

ticle mass and r the relative distance between the neighbouring and
the computational particle.

Time integration is performed according to a second-order
Leapfrog scheme (let refer to Violeau and Leroy [51] for stability
analysis and time integration schemes in SPH modelling):

xi;0

��
tþdt ¼ xi;0

��
t þ ui;0

��
tþdt=2 dt; i ¼ 1;2;3

ui;0

��
tþdt=2 ¼ ui;0

��
t�dt=2 þ

dui;0

dt

� �����
t

dt; i ¼ 1;2;3

q0jtþdt ¼ q0jt þ
dq0

dt

� �����
tþdt=2

dt

ð2:8Þ

Finally a barotropic equation of state is linearized as follows:

p ffi c2
ref q� qref

	 

ð2:9Þ

The artificial sound speed c is 10 times higher than the maxi-
mum fluid velocity (WC approach) and ‘‘ref’’ stands for a reference
state.

2.2. Modelling the balance equations for rigid body transport

Body dynamics is ruled by Euler–Newton equations, whose dis-
cretization takes advantage from the SPH formalism and the cou-
pling terms of Sections 2.3 and 2.4:

duCM

dt
¼ FTOT

mB

dxCM

dt
¼ uCM

MTOT ¼ IC

dvB

dt
þ

dIC

dt
vB ¼ IC

dvB

dt
þ vB � ICvB

	 


)
dvB

dt
¼ I�1

C MTOT � vB � ICvB

	 
h i
da
dt
¼ vB

ð2:10Þ

where the subscript ‘‘B’’ refers to a generic computational body and
‘‘CM’’ to its centre of mass.
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The first two relations of (2.10) represent the balance equa-
tions for the momentum and the time law for the position of

the body barycentre (FTOT is the global/resultant force acting on
the solid). The last two formulas of the system express the bal-

ance equation of the angular momentum (vB denotes the angular
velocity of the generic body) and the time evolution of the solid
orientation (a is the vector of the angles lying between the body

axis and the global reference system). MTOT represents the associ-
ated torque acting on the body and IC the matrix of the moment

of inertia of the computational body (Einstein’s notation works
for the subscript ‘‘l’’):

Ic;ij ¼
Z

VB

q r2
l dij � rirj

� �
dV ¼

R
VB

q r2
k þ r2

n

� �
dV ; i ¼ j; k;n – i

�
R

VB
q rirj
� �

dV ; i – j

( )

ð2:11Þ

In this sub-section r implicitly represents the relative distance from
the body centre of mass.

In order to solve the system (2.10), we need to model the global
force and torque, as described in the following. The resultant force
is composed of several terms:

FTOT ¼ Gþ PF þ TF þ PS þ TS; TF þ TS ffi 0 ð2:12Þ

G represents the gravity force, while PF and TF the vector sums of the

pressure and shear forces provided by the fluid. Analogously, PS and

TS are the vector sums of the normal and the shear forces provided
by other bodies or boundaries (solid–solid interactions). As this
study focuses on inertial and quasi-inertial fluid flows, we do not
implement neither turbulence scheme nor tangential stresses (sim-
plifying hypothesis). Future works are needed to extend the formu-
lation of Section 1 to a wider category of fluid flows.

The fluid–solid interaction is expressed by the following pres-
sure force:

PF ¼
X

s

psAsns ð2:13Þ

The computational body is numerically represented by solid
volume elements, here called (solid) ‘‘body particles’’ (‘‘s’’). Some
of them describe the body surface and are referred to as ‘‘surface
body particles’’. These particular elements are also characterized

by an area and a vector n of norm 1. This is normal to the body face
the particle (it belongs to) and points outward the fluid domain
(inward the solid body).

We then implement the boundary treatment of Adami et al.
[32] to compute the pressure of a body particle, as modified in

Section 2.3. Further, the solid–solid interaction term (Ps) is pre-
sented in Section 2.4.

On the other hand, the torque in (2.10) is discretized as the
summation of each vector product between the relative position

rs, of a surface body particle with respect to the body centre of
mass, and the corresponding total particle force:

MTOT ¼
X

s

rs � Fs ð2:14Þ

Time integration of the equations in (2.10) is performed using
a Leapfrog scheme analogous to and synchronized with (2.8). This
means that the body particle pressure is computed simultane-
ously to fluid pressure, so that this parameter is staggered of
around dt/2 with respect to all the other body particle
parameters.

After time integration, we can obtain the velocity of a body par-
ticle as the sum of the velocity of the corresponding body barycen-
tre and the relative velocity:

us ¼ uCM þ vB � rs ð2:15Þ
At this time, we can update the body particle normal vectors
and absolute positions, according to the following kinematics for-
mulas (da is the increment in the body rotation angle during the
on-going time step and Rij the body rotation matrix):

ns t þ dtð Þ ¼ RBns tð Þ; xs t þ dtð Þ ¼ xCM t þ dtð Þ þ RBrs tð Þ
RB ¼ RxRyRz; daB ¼ xBdt

Rx ¼
1 0 0
0 cos daxð Þ sin daxð Þ
0 � sin daxð Þ cos daxð Þ

2
64

3
75;

Ry ¼
cos day

� �
0 � sin day

� �
0 1 0

sin day
� �

0 cos day
� �

2
64

3
75;

Rz ¼
cos dazð Þ sin dazð Þ 0
� sin dazð Þ cos dazð Þ 0

0 0 1

2
64

3
75

ð2:16Þ
2.3. Modelling the fluid–body interaction terms

The fluid–body interaction terms rely on the boundary tech-
nique introduced by Adami et al. [32], here implemented and
adapted for free-slip conditions. If boundary is fixed, this method
can be interpreted as a discretization of the semi-analytic approach
used to treat fluid–boundary interactions (Section 2.1). The outer
domain of (2.2) is here represented by all the body particles inside
the kernel support of the computational fluid particle. Further,
Adami et al. [32] introduces a new term, related to the acceleration
of the fluid–solid interface, which influences the estimation of
body particle pressure. The implementation and our modifications
of this technique are hereafter described.

The fluid–body interaction term in the continuity equation rep-
resents a discrete approximation of the analogous term in (2.6),
used to treat frontiers (free-slip conditions):

Cs ¼ 2q0

X
s

us � u0ð Þ � ns½ �W 0
sxs ð2:17Þ

Analogously, the fluid–body interaction term in the momentum
Eq. (2.7) assumes the form:

as ¼
X

s

ps þ p0

q2
0

� �
W 0

sms ð2:18Þ

The pressure value of the generic neighbouring surface body parti-
cle ‘‘s’’ is derived as follows.

Let consider a generic point at a generic fluid–body interface. In
case of free-slip conditions, the normal projection of the accelera-
tion on the fluid side (‘‘f’’) and on the solid side (‘‘w’’) are equal
(in-built motion in the direction normal to the interface):

duf

dt

� �
� nw ¼ � 1

qf
rpf þ g

 !
� nw ¼ aw � nw ð2:19Þ

The ‘‘wall’’ acceleration at the position of a generic body particle
can then be derived by linearizing (2.19). This depends on the par-
ticular computational fluid particle ‘‘0’’ we are considering, so that
we can refer to the interaction subscript ‘‘s,0’’:

rpf � nw ¼ qf �aw � nw þ g
	 


� nw ) ps0

� p0 þ q0 g � as

	 

� xs � x00ð Þ � ns ð2:20Þ

One may apply a SPH interpolation over all the pressure values
estimated according to (2.20) to derive a unique pressure value for
a body particle:
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ps ¼
P

0ps0Ws0
m0
q0

	 

P

0Ws0
m0
q0

	 


¼
P

0 p0 þ q0 g � as

	 

� rs0 � ns

h i
Ws0

m0
q0

	 

P

0Ws0
m0
q0

	 
 ð2:21Þ

This pressure value is finally used in (2.18). The formulation pro-
vided by (2.17), (2.18) and (2.21) differs from Adami et al. [32]

because of the presence of ns in (2.21), necessary to represent
free-slip conditions.

Let now consider that only a minority of the body particles rep-
resents the body surface, but we also need many inner body parti-
cles to estimate ps. Thus, the model defines the normal vectors for
the neighbouring body particles lying inside the bodies, as
described by the following algorithm.

For any fluid–body particle interaction (Fig. 2.1, left panel), each
fluid particle searches for the most representative surface body

particle to define ns in (2.21) – ‘‘s0’’ interaction–. If the on-going
body particle ‘‘s’’ belongs to the body surface, then it is immediately
considered as representative. Otherwise, the fluid particle ‘‘0’’ iso-
lates its visible neighbouring surface body particles. Visibility is
assessed considering the sign of the projection of the
inter-particle distance on the body particle normal. The visible
neighbour, which is the closest to the joining segment of particles

‘‘0’’ and ‘‘s’’, is then selected. This particle provides the normal ‘‘ns’’
for the fluid–solid particle interaction ‘‘s0’’ in (2.21).

We finally consider that the assumption (2.19) relies on the fact
that all the involved variables are differentiable in time. This
means that this equation cannot properly deal with impulses (infi-
nite accelerations). However, the numerical accelerations of our
model are always finite and the solid particle accelerations can
be easily used in (2.21). Nevertheless, we prefer to define a maxi-

mum threshold for jasj, here equal to 10 g.
Examples of the estimations of (2.21) are provided in

Figs. 3.2(left) and 3.18(left).

2.4. Modelling the solid–solid interaction terms

The solid–solid interaction term in (2.12) – Ps – represents
body–body and body–boundary (full elastic) impingement forces,
Fig. 2.1. Schematic representations of 2D non-homogeneous SPH interactions. Left pane
(xs) with a generic fluid particle (x0); red circles: barycentres of surface body particles; gre
the fluid particles; blue crosses: barycentres of the fluid particles; dashed lines delimit th
of the surface body particles; continuous lines: body boundary. Centre panel: estimation
generic surface body particle (xs2). Right panel: interaction of a generic inner body partic
colour in this figure legend, the reader is referred to the web version of this article.)
whose time and spatial evolution, in the continuum, is theoreti-
cally proportional to the Dirac’s delta. The numerical model needs

to discretize Ps as explained hereafter.
The ‘‘boundary force particle’’ method of Monaghan [1] defines

repulsive forces to represent a conservative full elastic impinge-
ment between two SPH interacting particles (of any medium). In
particular, the acceleration abfp;jk of particle ‘‘j’’, due to the impinge-

ment with particle ‘‘k’’, is aligned with the inter-particle distance r
and inversely proportional to its absolute value r:

abfp;jk ¼
f bfp

rjk

mk

mj þmk
njk ð2:22Þ

The analytic function fbfp is symmetric with respect to the
impact point. The dependence of (2.22) on the particle masses
allows conserving both global momentum mjabfp;jk ¼ �mkabfp;kj

� �
and kinetic energy (one may notice that njk ¼ �njk and f jk ¼ f kjÞ.
The formulation works for inter-particle high velocity impacts.

This formulation is here applied and extended to whole solid
bodies (not only particle impingements), even at low velocities,
as well as body–frontier interactions. Consider the overall force

Ps, which represents the impingements between a generic compu-
tational body (‘‘B’’) and all its neighbouring bodies (‘‘K’’) and fron-

tiers (‘‘K	 ’’). Ps is decomposed in elementary 2-body (PBK) and
body–frontier (PBK	 ) interactions:

PS ¼
X

K

PBK þ
X

K	
PBK	 ð2:23Þ

Adopting the same principles of the boundary force particle

method, PBK involves interactions between all the body particles
‘‘j’’ of the computational body ‘‘B’’ and their neighbour body parti-
cles ‘‘k’’, belonging to the neighbouring body ‘‘K’’:

PBK ¼ �aI

X
j

X
k

2u2
?;jk

rper;jk

mjmk

mj þmk
Cjk 1� rpar;jk

dxs

� �
nk ð2:24Þ

The components of the inter-particle relative distance, rpar and

rper (Fig. 2.1, centre panel), are parallel and perpendicular to the
neighbour normal, respectively. The term within brackets in
(2.24) deforms the kernel support of the body particles ‘‘j’’, so that
it mainly develops along the direction aligned with the normal of
l: Detection of the normal n0s = ns in the interaction of a generic inner body particle
en circles: barycentres of the inner body particles; blue circles: numerical position of
e volume (surface in 2D) of the numerical elements; orange arrows: normal vectors
of r, rper and rpar in the interaction between a generic inner body particle (xs1) and a

le (xs) with a frontier ‘‘K	 ’’ (brown thick line). (For interpretation of the references to



Fig. 2.2. Simplified algorithm of the numerical model. In orange we highlight the
numerical features developed during this study to allow representing the transport
of solid bodies in free surface flows. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the neighbouring particle (dxs is the size of the body particles). The
weighting function C is expressed according to Monaghan [1] and
depends on q = rjk/h:

Cjk ¼

2
3 ; 0 6 q < 2

3

2q� 3
2 q2

� �
; 2

3 6 q < 1
1
2 2� qð Þ2; 1 6 q < 2
0; 2 6 q

8>>>><
>>>>:

ð2:25Þ

This study introduces two modifications for body–body interac-
tions, with respect to the original formulation of the boundary
force particles. The first one concerns the impact velocity u?;jk,
which replaces the term ‘‘0.1c’’ in the formulation of Monaghan
[1] and properly deals with low velocity impacts. It avoids too
strong or too weak impingement forces. For each body–body inter-
action, the impact velocity has a unique value for all the particle–
particle interactions during the on-going time step. This velocity is
computed as the maximum of the absolute values of the
inter-particle relative velocity (projected over the normal of the
neighbouring particle). For this purpose, the model considers all
the inter-particle interactions recorded while the 2 bodies are
approaching. The expression for the impact velocity reads:

u?;jk tð Þ ¼max
j;k;t	

uj � uk
� �

� nk
� ��� ��
 �

; t0 6 t	 6 t ð2:26Þ

where t0 refers to the beginning of the approaching phase.
When other forces (e.g. pressure and gravity forces) are taken
into account, the impact velocity can eventually increase in
the inter-body impact zone, causing a potential and partial pen-
etration of a solid into another body. In this case, and only dur-
ing the approaching phase, (2.26) allows increasing the
magnitude of the impingement force, depending on the actual
impact velocity (instead of the undisturbed impact velocity).
This modification avoids mass penetrations in case of complex
impingements.

Further, this study introduces the coefficient aI . This normaliz-
ing parameter corrects discretization errors and better preserves
the global momentum and kinetic energy of the body–body system
during the impingement. Neglecting aI , (2.24) drastically
under-estimates the impingement forces if the whole mass of the
bodies does not lie within the impact zone (of depth 2 h). To avoid
this shortcoming, a formulation for aI is presented hereafter.
Consider the absolute value of the impingement force Ps as a func-
tion of the global parameters of the bodies, instead of the particle
values. This second formulation for PBK is denoted as follows:

PBK 0 �
2u2
?;BK

rper;BK

mBmK

mB þmK
CBK ; rper;BK ¼ min

B;K
rper;jk

 �

;

u2
?;BK ¼max

B;K
u2
?;jk

n o
ð2:27Þ

The inter-body velocity impact u?;BK is now defined as the high-
est amongst the particle impact velocities, while the relative
inter-body distance is considered as the minimum amongst the
corresponding inter-particle distances. In practise, u?;BK can be
roughly, but more efficiently, estimated as the sum of the absolute
values of the two body particles, whose interaction shows the
highest relative velocity in the system.

One may now derive a proper definition for aI , by equalling PBK

to P0BK :

aI ¼
X

K

u2
?;BK

rper;BK

mBmK

mB þmK
CBK

,X
j

X
k

u2
?;jk

rper;jk

mjmk

mj þmk
Cjk 1� rpar;jk

dxs

� �" #

ð2:28Þ

In practise, we prefer to use the following approximated formula-
tion to speed-up the simulations:
aI ¼
X

K

1
rper;BK

mBmK

mB þmK
CBK

,X
j

X
k

1
rper;jk

mjmk

mj þmk
Cjk 1� rpar;jk

dxs

� �� �

ð2:29Þ

(2.29) is equivalent to considering the body impact velocity as a
weighted average of the particle impact velocities of (2.23).

At a first approximation, the normalizing factor aI roughly rep-
resents the inverse of the fraction of the system mass which lies
into the impingement zone. This mass should numerically repre-
sent the 2-body system during the impact. On the other hand,
one cannot use (2.27) to model a body–body impact. In this case,
for example, a definition for the direction of P0s is required, but
the direction of the relative distance between the two bodies does
not avoid mass penetration. This would happen, for example, if two
cubic bodies, very close to each other and with null barycentre
velocities, began to rotate.

Finally, the model represents body–boundary interactions. A
generic boundary is modelled as a body with infinite mass and dis-
cretization tending to zero (the semi-analytic approach, used to
model frontiers, is an integral method). The interaction force
assumes the following expression (here the subscript ‘‘K	 ’’ refers
to a generic neighbouring frontier; Fig. 2.1, right panel):

PBK	 ¼�aI

X
j

2u2
?;jK	

rper;jK	
mjCjK	nK	 ; aI ¼

mB

rper;BK	
CBK	

,X
j

mj

rper;jK	
CjK	

� �

ð2:30Þ
2.5. Model algorithm

This section briefly reports the main features of the model algo-
rithm (Fig. 2.2).

The parameters of the fluid particles, the body particles and the
domain frontiers are directly initialized in input, depending on the
test case. This simple process generally does not require relevant
efforts, especially if a discretized boundary geometry is already
available. The initial fluid volume/s are assigned as one/more fluid
polyhedron/s. Uniform-sized SPH fluid particles fill this volume/s
and are located on Cartesian grids, which are cut by the polyhedron
faces. The fluid domain can assume any generic 3D shape (the
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initial positions of the SPH fluid particles are not exactly optimized
to minimize the SPH truncation errors). At this stage, only density
is evaluated from the initial pressure values, using the inverse of
the state equation. Each 3D solid body is completely discretized
with uniform-sized body particles, disposed on a regular
Cartesian grid in the local reference system of the body. This pro-
cedure has been applied to geometries represented by Boolean
operations over parallelepiped/rectangle shapes, such as the 2D
and 3D bodies simulated in Section 3. The application of the pre-
sented model on more complex 3D body geometries is quite
straightforward. It would eventually require an optimized proce-
dure to initialize particle positions inside the bodies and further
validations. Contrarily, fixed frontiers do not need any discretiza-
tion, according to the semi-analytic approach [33].

At the beginning of any iteration, we assess the time step dura-
tion. We then compute the Right Hand Sides (RHS) of the particle
balance equations for the fluid momentum, with the corresponding
boundary conditions at frontiers (‘‘semi-analytical approach’’).
Further, we estimate the RHS of the body dynamics equations, with
the fluid–body, body–body and body–boundary coupling terms. It
follows time integration for all the cited equations and we get
fluid/body particle velocities and trajectories. At this point, we
associate particles with the cells of a coarse reference/background
(non-computational) grid. This way, we can efficiently compute all
the geometrical parameters needed by the SPH technique (relative
distances, kernel functions and derivatives, Shepard coefficient,
neighbouring lists). The model can now estimate fluid density by
solving the continuity equation (with the fluid–body coupling
terms) and convert it into pressure, through the state equation
(WC approach). At this stage, the model estimates the pressure val-
ues of the surface body particles. The fluid pressure field is then
partially smoothed (according to Di Monaco et al. [33] and Areti
et al. [52]) and converted again in a density field. Finally, the model
checks boundary conditions and eventually writes output files.

3. Results

After some preliminary investigations (flat body impinged by a
water jet – Section 3.1, body–body and body–boundary impacts –
Sections 3.2 and 3.3), the numerical model presented in Section 2 is
validated on a sequence of four 2D test cases involving water
entries of falling wedges (Section 3.4). Further, the model is tested
when dealing with simultaneous multiple interactions (fluid–body,
body–body and body–boundary – Section 3.5), just to verify that
no mass penetration occurs during multiple 3D impingements.
We then validate the model performance over a dam break event
(Section 3.6), involving the 3D transport (6 degrees of freedom)
of a floating body, a moving dam/gate (treated as a body in terms
Fig. 3.1. Flat body impinged by a water jet. Left panel: field of the pressure coefficient u
Right panel: profile of the pressure coefficient over the plate; comparison between the m
halved h value (‘‘SPH-body-h/2’’) and other SPH results (‘‘SA-SPH’’ and ‘‘DB-SPH’’, as repo
figure legend, the reader is referred to the web version of this article.)
of fluid–body interactions) and fixed obstacles (treated as fron-
tiers). A similar case is finally explored to provide a demonstrative
3D test with the simultaneous transport of 9 solid bodies during a
dam break event.

For each of the following test cases, we set h/dx = 1.3 and the
CFL number to 0.1. If not otherwise stated, the present model will
be denoted by ‘‘SPH-body’’, just for simplicity of notation.
3.1. Flat body impinged by a water jet (2D)

This test case provides a validation of the fluid–body interaction
scheme, at high velocity impacts. A water jet perpendicularly
impinges a flat body (gravity effects are negligible). The jet inlet
section is characterized by the diameter D = 0.028 m and the abso-

lute value of velocity juinj = 19.61 m/s. The flow can be approxi-
mately considered as potential [53]. The distance between the
inlet section and the body surface is 0.120 m. The particle size is
dx = 0.001 m and dx/dxs = 2.0. After t = 0.1 s, stationary conditions
are approximately established. At this time, Bernoulli’s theorem
can be applied to derive an analytical solution [53]. The field of
the pressure coefficient is characterized by its maximum value
(equal to unity) at the stagnation point, where kinetic energy is
zero, and null values far from the plate, where the kinetic energy
tends to the total energy. These conditions are numerically well
represented in Fig. 3.1(left), where the pressure coefficient is

defined as Cp � p=0:5q uinj j2
	 


, despite some overestimations over

the body surface, around the stagnation point.
A quantitative validation is provided in Fig. 3.1 (right). The

numerical model well reproduces the spatial evolution of the pres-
sure coefficient, even if it slightly over-predicts the peak of the
pressure coefficient (of around 10%). Nevertheless its performance
is satisfying, especially when compared with other the SPH bound-
ary techniques like the semi-analytic approach (‘‘SA-SPH’’, as
described in Di Monaco et al. [33] and validated on this test case
in Amicarelli et al. [39]). At the same time, the boundary treatment
relying on discrete surface boundary elements (‘‘DB-SPH’’, pre-
sented in Amicarelli et al. [39]) provides better results. The differ-
ences between the three SPH methods compared in Fig. 3.1(right
panel) are briefly discussed in the following.

The Discrete Boundary (DB)-SPH approach [39] relies on a com-
plete SPH particle approximation with both volume and surface
terms [35], uses discrete wall elements and adopts an upwind first
order spatial reconstruction scheme at boundaries, based on a
Linearized Partial Riemann Solver [17]. Although a better accuracy
attained by the DB-SPH approach on this test case, the scheme
defined in Section 2.3 (named ‘‘SPH-body’’ in Fig. 3.1) was imple-
mented and validated for the fluid–body interactions of the
nder stationary conditions (body particles are coloured in semitransparent black).
odel results (‘‘SPH-body’’), the analytical solution (‘‘sol’’; [53]), a simulation with a
rted in Amicarelli et al. [39]). (For interpretation of the references to colour in this
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presented model (Section 3). Contrarily to DB-SPH method, the
approach of Section 2.3 requires a simpler and faster algorithm,
does not alter the mathematical model of Section 2.1 in the inner
domain and efficiently benefits of the presence of the body parti-
cles, which are however required by the presented model to com-
pute the time-dependent moments of inertia of the solid bodies
(Section 2.2).

SA-SPH method represents a semi-analytical approach [34,33],
which fills the truncated part of a boundary kernel with a fictitious
‘‘outer volume’’, where analytical integrals are computed. The sim-
plifying hypothesis on the fluid dynamics fields in the ‘‘outer
domain’’ limits its performance on this test case. However,
SA-SPH approach still provides valuable results in 3D SPH mod-
elling (e.g. [33,39]) and is here used for fluid–frontier interactions
(one may notice in Section 1 that frontiers are neither considered
as solid bodies, nor discretized with body particles).

Considering a further simulation of the presented model with a
halved kernel support length (‘‘SPH-body-h/2’’), the reference
results (‘‘SPH-body’’) show sufficiently independent from spatial
resolution (Fig. 3.1, right panel).

Finally, Fig. 3.2 reports some details of the fields of the pressure
coefficient (left panel) and the absolute value of velocity, scaled on
the inlet velocity (right panel). In the first image the body particles
are coloured according to their pressure coefficient values. The
resulting pressure field depicted by the values of the body particles
is regular and well matches the fluid pressure field at the fluid–
solid interface. Further, particles without fluid neighbours keep
null pressure values. In the latter image (right) we also verify that
the present boundary treatment (Section 2.2) avoids penetration of
fluid particles into the solid plate (body particles are coloured in
semitransparent black so that any eventual penetration would be
clearly visible).
3.2. 1D body–body impingements of 3D solids

These test cases reproduce several elementary and full elastic
2-body impingements (gravity is neglected). The test cases are
3D, even if the impact dynamics are 1D. This section provides a
preliminary validation of the numerical scheme of Section 2.4.
(modified version of the ‘‘boundary force particles’’)

Three configurations are explored: a symmetric case (‘‘sym’’,
with absolute value of velocity equal for both the bodies) and
two asymmetric test cases, with alternatively high (‘‘high_vel’’)
and low (‘‘low_vel’’) impact velocities, as explained in the
following.

We set dxs = 0.0025 m and bodies are cubes of 0.05 m length. In

the first case the initial absolute value of velocity juCMj for both the
bodies is 0.5 m/s; the body velocities are 0.25 m/s and 0.75 m/s in
the second test, while the third configuration considers lower val-
ues (0.025 m/s and 0.075 m/s).
Fig. 3.2. Flat body impinged by a water jet. Left panel: details of the field of the pressu
details of the field of the absolute value of velocity (scaled on the inlet velocity; body par
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3.3(left column) shows a sequence of the velocity field (u) in
case of low velocity impact (‘‘low_vel’’). The bodies begin to inter-
act (top), collide at null velocities (centre) and leave the impact
zone (bottom). Their absolute values of the simulated body veloc-
ities at the end of the interaction are correctly exchanged, with
respect to the initial conditions (conservation of the global
momentum and kinetic energy). The errors are beyond the 9th sig-
nificant digit and are only caused by numerical truncation errors.
When the bodies collide, they are not exactly touching. A very thin
space (of the order of dxs) guarantees that, even in more complex
configurations, like full 3D interactions in presence of water,
boundaries and gravity, no penetration occurs (let consider that
the SPH spatial resolution is defined as 2 h or 4 h, instead of dxs).

The time evolution of velocity is reported in Fig. 3.3 (top right
panel). Hereafter, we normalize time on the impact time, simply
defined as the whole interaction period. Each curve is correctly
symmetric with respect to t = t⁄ = 0.5. Further, once having normal-
ized the velocities on their initial values, the curves of the low
velocity case and the ones of the asymmetric case (at higher veloc-
ities) overlap each other. This represents some simple numerical
evidence that the model performance is not sensitive to the impact
velocity.

When normalizing the curves of the absolute value of the inter-
action forces for all the six bodies (in the three different simula-
tions), they all overlap each other (Fig. 3.3, bottom right panel).
In particular, they are similar to Gaussian functions (with peaks
at the minimum relative distance) and keep symmetric with
respect to t ¼ t	 ¼ 0:5. These curves represent discrete approxima-
tions of Dirac’s delta function, which theoretically relates to the
time evolution of an impulse force.

Finally, the formulation presented in Section 2.4 allows repre-
senting elementary full elastic 2-body impacts with no mass pen-
etrations, even at low velocities.
3.3. 1D body–boundary interactions for a 3D solid

According to the procedure explained in Section 3.2., we here
validate a simple body–boundary interaction, according to (2.30).
The numerical parameters of the body are the same as the previous
test case, but the initial absolute value of the body velocity is alter-
natively equal to 1.0 m/s (‘‘high_vel’’) or 0.10 m/s (‘‘low_vel’’). On
the other side, the boundary is fixed.

A sequence of the field of the absolute value of velocity is
reported in Fig. 3.4 (left column). The black line represents the
solid boundary (lateral view). The impact zone, with depth of 2 h,
lies between this line and the violet one.

The time evolution of the absolute value of velocity (Fig. 3.4, top
right panel) is symmetric with respect to the impact time
(t ¼ t	 ¼ 0:5), when the body velocity is null. The initial and final
values of the body velocity are exactly equal (but for truncation
re coefficient over the body surface (body particle values are shown). Right panel:
ticles are coloured in semitransparent black). (For interpretation of the references to



Fig. 3.3. 1D body–body impacts of 3D solids. Left column: sequence of the velocity field for the low velocity impact (‘‘low_vel’’). Right column: time evolution of the x-
component of velocity for all the test cases (top panel) and absolute value of the interaction force for all the test cases (bottom panel).
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errors beyond the 9th significant digit) providing the solution for a
full elastic impact. The curves of the two simulations overlap, once
scaling both velocity and time.

Analogously to what happens in body–body impacts, the
impingement is represented as a continuous dynamics ruled by
an interaction force derivable in time (Fig. 3.4, bottom right panel).
Validation shows that the reliability of this representation does not
depend on the impact velocity.

3.4. Water entries of falling wedges (2D)

The numerical model of Section 2 is tested on a sequence of four
experimental test cases [54], involving water entries of falling
wedges (2D). These represent equivalent bodies so that the model
can directly represent only their portions interacting with water
(triangles as in Fig. 3.6). The effects caused by the rest of the body
are taken into account by considering the whole mass and moment
of inertia and the actual centre of mass, located outside the numer-
ical body (in brown in Fig. 3.6). Full details of the experimental
set-up are provided in Hay et al. [54]. The four test cases differ
from each other in terms of mass, moment of inertia, initial posi-
tion and body orientation (with respect to the free surface), as
reported in Table 3.1. Experimental measures and numerical
inter-comparisons are available for all the test cases. The initial
velocities and positions refer to the wedge as it is experimentally
represented. As we just perform a single phase simulation, we con-
sider that, before the impact with water, wedges are simply accel-
erated by gravity. This hypothesis introduces some discrepancies
with respect to the experiments, mainly in terms of initial condi-
tions of the very numerical simulations, which start at the impact
time (timp, provided as an experimental input). Further, for the
symmetric cases, the time origin has been translated of the same
value for both the experimental and numerical curves, so that
the impact time is simply set to zero. The base of the triangular
wedges (Fig. 3.6) is L = 0.610 m, their height H = 0.111 m. The ori-
gin of the reference system is located where the lowest point of
the triangle touches the free surface (Fig. 3.6, top left panel), at
t = timp. The numerical simulations adopt dx = 0.002 m and
dx/dxs = 2.0.

Even though the impact time is an experimental input, some
minor discrepancies still survive in terms of numerical initial con-
ditions. In fact, our mono-phase approach determines an impact
velocity of �3.4588 m/s and the wedge orientation should not
change during the fall. We cannot replace this data with the exper-
imental one, because this is not available. Even if this lack of infor-
mation can be appreciable, its effect is clearly detectable and does
not disturb these model validations, as demonstrated in the follow-
ing subsections.

Validations are performed against experimental results [54] in
terms of vertical acceleration, normalized by the gravitational
one (a/g), and angular acceleration, expressed in 103 deg/s2.
Further inter-comparisons are provided for the maximum values
of pressure on the wedge surface, taking into account the URANS
results of Hay et al. [54]. The acceleration computed for the sym-
metric test cases is also compared with the estimations provided
by a theoretical method (the asymptotic method of Hay et al. [54]).



Fig. 3.4. 1D body–boundary impacts for a 3D solid. Left panel: sequence of the field of the absolute value of velocity (lateral view; ‘‘low_vel’’ case). Right column: time
evolution of the x-component of velocity (top panel), and the absolute value of the interaction force (bottom panel).

Table 3.1
Synoptic view of the experimental parameters for the four test cases involving falling wedges [54].

Test case zCM(t0, m) mB (kg/m) Ic (kg ⁄m) Heel angle (t0) timp (s)

Symmetric water entry, light (weight) wedge 0.216 + 0.610 50.000 / 0� 0.000
Symmetric water entry, medium (weight) wedge 0.216 + 0.610 119.262 / 0� 0.000
Asymmetric water entry, light (weight) wedge 0.216 + 0.610 50.820 3.6270 5� 0.356
Asymmetric water entry, medium (weight) wedge 0.165 + 0.610 120.080 4.4877 5� 0.355
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Hereafter, experimental errors are not shown in case they were
treated as negligible by the associated authors. On the other hand,
SPH truncation errors are represented by error-bars, whose length
is roughly overestimated by treating errors as instantaneous fluc-
tuations around the reference time-averaged values.

3.4.1. Symmetric water entry of a light wedge (2D)
Time evolution of the normalized acceleration is reported in

Fig. 3.5(left column). At the impact time (t = 0 s), only gravity
forces are acting on the numerical body (a/g = �1). As the wedge
crosses the free surface, the hydrodynamic vertical force grows
until a maximum (at around 0.008 s) and then exponentially
decreases, while the velocity of the body decelerates as well. The
numerical results show a good agreement with the experimental
values, in terms of time evolution, peak value and absolute errors.
At the same time some differences can be appreciated. The numer-
ical evolution is smoother than the experimental one and the ini-
tial conditions are not exactly the same. The first issue mainly
concerns the solid deformation: the experimental body has a finite
stiffness, so that its very small deformations cause some
small-scale pressure oscillations in the fluid domain, propagating
from the solid–fluid interface. They cannot be represented in the
frame of rigid solid simulations Xu et al. [55]. As we numerically
treat bodies with infinite stiffness, we filter these small scale oscil-
lations, whose representation is beyond the aim of this study. In
this context, a secondary source of error could be introduced by
treating inertial flows, without modelling any turbulent shear
stress (no contributions of turbulent vortices, which are formally
smaller than 2 h or 4 h).

The second minor discrepancy (initial conditions) is due to the
solid-air interactions before the impact (as already discussed at the
beginning of Section 3.4; mono-phase formulation).

We also notice that our SPH results are in agreement with the
estimations provided by a theoretical method (asymptotic method
of Hay et al. [54]), which provides an approximated and smooth
solution.

A more complex estimation is represented by the time evolu-
tion of the Cp maximum value (Fig. 3.5, right panel; the velocity
scale is here the impact velocity). Cp is null at the beginning of
the simulation, reaches a maximum of around Cp = 16 at
t = 0.002 s (much sooner than the maximum value of the resultant
force) and then exponentially decreases until the end of the



Fig. 3.5. Symmetric water entry of a light wedge. Left panel: time evolution of the normalized acceleration. Right panel: time evolution of the maximum value of the pressure
coefficient over the wedge surface. Validation and inter-comparisons.
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simulation, showing a somewhat noisy behaviour. SPH models
usually suffer from some spurious very small-scale perturbations
of the pressure field, and normally show some appreciable errors
in computing the highest and lowest particle values of pressure.
Further, we here estimate the very highest Cp value amongst all
the boundary particles at the interface solid–fluid (100th per-
centile). Despite these general difficulties, we can appreciate the
reliability of the present model in computing the maximum values
of the pressure levels, by comparison with URANS estimations of
Hay et al. [54] (Fig. 3.5, right). For further inter-comparisons, the
asymptotic method provides a theoretical solution, whose initial
conditions do not satisfy the constraint Cp = 0. After t = 0.002 s, this
theoretical and approximated curve begins to be very close to the
experimental and the numerical ones. One may notice that the
model accuracy depends on the choice of the artificial speed of
sound in (2.9). For the test cases of Section 3, working with maxi-
mum values of the Mach number at around Ma = 0.1 (upper limit
imposed by any Weakly Compressible CFD approach), guarantees
the result accuracy.

We can analyse the fields of the pressure coefficient in
Fig. 3.6(left column) and compare them with the analogous simu-
lation of Section 3.6.2, which considers a heavier wedge (Table 3.1).

The impact defines the beginning of the numerical simulation
(t = 0 s). For both cases, the highest value of the maximum Cp is
roughly reached at around t = 0.002 s. The peak of the hydrody-
namic force occurs at around 0.008 s and 0.016 s for the light and
medium wedge, respectively. The medium weight wedge is clearly
faster than the light one. Thus, the maximum value of the hydrody-
namic force is higher, delayed in time and occurs when more than
a half of each lateral side of the wedge interacts with water. At
t = 0.030 s, the whole bottom surface of the medium wedge is com-
pletely inside the inner fluid domain, whilst the light wedge is still
higher on the free surface and its lateral vertices are just covered
by a very thin layer of fluid. This is represented by the two lateral
and symmetric jets, which are generated after the impact. They
move along the bottom sides of the wedges and keep these direc-
tions even when they leave the fluid–solid interfaces. When the
bottom sides of the light wedge are completely submerged
(t = 0.042 s), the medium wedge is still lower and its lateral jets
are no longer aligned with the bottom sides of the body. At this
time, they directly interact with the water reservoir and are
deflected upward.

Fig. 3.7 finally provides some examples of the field of the nor-
malized velocity. The relative maxima are recorded along the ver-
tical lines passing for the lateral vertices of the wedge, while the
lateral jets present the absolute highest values of velocity. As for
Fig. 3.6, the body is coloured in semitransparent black, so that
we can appreciate that no fluid particle crosses the fluid–body
interface, thus no mass penetration occurs.
3.4.2. Symmetric water entry of a medium weight wedge (2D)
This test case mainly differs from the previous one in terms of

wedge mass, which is approximately 2.4 times heavier than the
light wedge case (Table 3.1). We have analyzed the pressure and
velocity fields in Section 3.4.1 and we here quantitatively validate
the corresponding results.

The time evolution of the normalized acceleration is analogous
to the one of the light wedge (Fig. 3.8, top left panel). Here the
maximum value of a/g is reached later, at around t = 0.016 s. The
comparisons with experimental results reveal a good performance
of the model, both in terms of time evolution and peak values. At
the same time some minor discrepancies are recorded. The exper-
imental data show a noisier evolution than SPH results and initial
conditions do not match exactly. These minor discrepancies are
due to the use of rigid bodies and a mono-phase approach, respec-
tively (as explained in Section 3.4.1). Further, all the numerical
results lie within 36% of the approximated and theoretical estima-
tions of the asymptotic method [54].

Fig. 3.8(top right panel) shows the time evolution of the maxi-
mum value of the pressure coefficient on the wedge surface.
Despite some noise in its shape, SPH results agree quite well with
the URANS estimations Hay et al. [54], both in terms of general
trend and peak levels. A further inter-comparison is still provided
by the theoretical and approximated solution of the asymptotic
method.

Fig. 3.8(bottom) reports in detail an example of the field of the
pressure coefficient. At this scale, we can better appreciate the spa-
tial evolution of the pressure field at t = 0.030 s, when the bottom
sides of the wedge begin to be completely submerged. The peak
occurs below the lateral vertices of the body and pressure levels
decrease towards the bottom vertex of the body. The pressure field
is quite regular and no relevant spurious oscillations are observed.
Finally, we notice that no fluid particle penetrates the solid domain
(here coloured in semitransparent black).

3.4.3. Asymmetric water entry of a light wedge (2D)
The test cases analyzed in the present and the next sub-section

provide further validations in terms of body accelerations and
pressure maxima. At the same time, they evaluate the performance
of the model in estimating the angular acceleration of solid wedges
falling into a water pool.

The main difference, with respect to the symmetric wedge falls,
consists in the initial orientation of the body with respect to the
free surface. The angle between the body axis (which passes for
the centre of the top side) and the vertical axis is 5� (heel angle).
During the experimental realization, the pressure values become
positive even before the impact, because of some air cushioning
effects Hay et al. [54], as also denoted by the gradient of the first
part of the experimental curve in Fig. 3.9(top, left panel).



Fig. 3.6. Symmetric water entries of solid wedges: time evolution of the field of the pressure coefficient. Left column: light wedge. Right column: medium wedge.
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Fig. 3.7. Symmetric water entries of solid wedges: time evolution of the field of the absolute value of the normalized velocity. Left column: light wedge. Right column:
medium wedge.

Fig. 3.8. Symmetric water entry of a medium (weight) wedge. Top. Left panel: time evolution of the normalized acceleration. Right panel: time evolution of the maximum
value of the pressure coefficient over the wedge. Bottom panel: example of the field of the pressure coefficient. Validation and inter-comparisons.
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According to the experimental data, the impact time should be
t = 0.356 s. The same figure shows the comparison between the
SPH results and the experimental values. The agreement is satisfy-
ing, both in terms of time evolution and peak value. The minor dis-
crepancy, related to the initial conditions, has the same cause
discussed in the previous sub-sections (mono-phase approach).
Further, we notice some underestimation of the force in the last
phase of the simulation.

The time evolution of the angular acceleration is reported in
Fig. 3.9(top, right). The numerical model provides a good



Fig. 3.9. Asymmetric water entry of a light wedge. Top. Left panel: time evolution of the normalized acceleration. Right panel: time evolution of the angular acceleration.
Bottom panel: time evolution of the maximum value of the pressure coefficient over the wedge surface. Validation and inter-comparisons. The reference simulation is also
performed at a halved CFL number (‘‘SPH-body-CFL/2’’).
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estimation of this parameter, which is more sensitive to the effects
of the body deformability (experimental small scale oscillations)
than the linear acceleration. The SPH curve should then be inter-
preted as a filtered estimation of the measured profile. As for the
previous test cases, the lack of experimental data causes some dis-
crepancies in the first stage of the simulation, which is
mono-phase. This statement can be supported by two considera-
tions. First, the highest error in the time pattern of the angular
acceleration occurs at the impact. At this time the numerical body
begins to rotate anticlockwise, whilst the experimental one has
been already rotating on the other sense for few instants. In fact,
air cushioning effects are not numerically modelled. In this con-
text, we remind that the body centre of mass is outside and higher
than the modelled wedge (Table 3.1). Secondly, some evidence
may arise in Section 3.4.4 (asymmetric medium wedge), when
the SPH numerical estimation of the angular acceleration is notice-
ably more reliable and there is no systematic estimation in the first
part of the simulation. In fact, the dynamics of a heavier body is
less sensitive to air–solid interactions. Considering a further simu-
lation of the presented model with a halved CFL number
(‘‘SPH-body-CFL/2’’), the reference results (‘‘SPH-body’’) show suf-
ficiently independent from time stepping (Fig. 3.9, top row and
bottom right panels). We finally notice that the light body is more
dependent on the slight overestimation in the peaks of the pres-
sure levels at the beginning of the simulation, reproduced on the
left side of the wedge, as described hereafter.

Fig. 3.9(bottom panels) shows the maximum values of the pres-
sure coefficient, by comparing the SPH results with the URANS esti-
mations of Hay et al. [54]. The peak in the left side of the wedge
(‘‘L’’) introduces a fictitious contribution, which tends to rotate
the wedge anticlockwise. On the other hand, time evolution of
the peak values in the right (‘‘R’’) side of the wedge are satisfacto-
rily reproduced, apart from some small scale noise.
A time sequence of the field of the pressure coefficient is repre-
sented in Fig. 3.10(left column), in comparison with the analogous
test case of Section 3.4.4 (asymmetric medium wedge, right col-
umn). The light wedge reaches the maximum value of Cp on its left
bottom side at around t = 0.357 s, just before the peak is recorded
on the curve of the right bottom side of the wedge (at around
t = 0.359 s). As the wedge enters the water pool, the overall hydro-
dynamic force increases up to a maximum value (at around
t = 0.365 s). During this first phase the body has been increasingly
accelerated in its anticlockwise rotation up to a maximum pro-
vided at around t = 0.371 s.

After this time, both the vertical force and the torque decrease
together until around t = 0.385 s. Now the angular velocity of the
body begins to decrease as the contributions to the torque, as
applied on the left side of the wedge, become predominant with
respect to the right side (even if the body will never rotate clock-
wise). Two jets are already visible, as the free surface is deviated
by the wedge itself. These jets have the same orientation of the
wedge bottom sides. The maximum value of the clockwise angular
acceleration is reached at around t = 0.397 s, when a relative max-
imum in the pressure coefficient field is detected at the left vertex
of the body, which impacts the water pool. On the other hand, the
descent of the medium weight wedge is more rapid and determi-
nes higher pressure levels in the fluid domain than the light wedge.
As it penetrates faster into the water reservoir, the body reaches a
symmetric and stable orientation (with null angular acceleration)
more rapidly (since around t = 0.421 s), whilst the light wedge is
still rotating.

Fig. 3.11 reports some examples of the field of the normalized
velocity, where we can better appreciate the faster descent of the
medium wedge, and a more accentuated deflection of its lateral
jets with respect to the light wedge. No penetration of fluid particle
into the solid domain (coloured in semitransparent black) occurs.



Fig. 3.10. Asymmetric water entries of solid wedges: time evolution of the field of the pressure coefficient. Left column: light wedge. Right column: medium wedge.
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Fig. 3.11. Asymmetric water entries of solid wedges: time evolution of the field of the absolute value of the normalized velocity. Left column: light wedge. Right column:
medium wedge.

Fig. 3.12. Asymmetric water entry of a medium wedge. Top row. Left panel: time evolution of the normalized acceleration. Right panel: time evolution of the angular
acceleration. Bottom row. Left panel: time evolution of the maximum value of the pressure coefficient over the wedge. Right panel: example of the field of the pressure
coefficient. Validation and inter-comparisons.
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3.4.4. Asymmetric water entry of a medium weight wedge (2D)
This section describes a quantitative validation concerning the

asymmetric fall of a medium weight wedge (Table 3.1), while the
pressure and velocity fields of this test case have already been ana-
lyzed in Section 3.4.3.

Fig. 3.12(top row) shows the comparisons between numerical
and experimental values of the normalized acceleration (left panel)
and angular acceleration (right panel). The first is well reproduced
in terms of main time evolution and peak value. The angular accel-
eration is well represented as well, by correctly filtering the small
scale oscillations (due to the deformability of the body, as already
discussed).

The performance of the model is more reliable than the previ-
ous test case, as explained in the following. The main reason is
related to the definition of the initial conditions, at the beginning
of the water-body impact. Thanks to its higher mass and moment
of inertia (2.4 and 1.2 time higher than those of Section 3.4.3,
respectively), this heavier wedge is less sensitive to the aerody-
namic forces and torques interesting the body before the impact.
As a result, the agreement between experimental and SPH results
is improved, especially in terms of angular acceleration (Fig. 3.12,
top right panel).
Fig. 3.13. Multiple interactions. Time evolution of the pressure field and the correspondi
the few fluid particles at around y = 0.100 m are shown).
In general, the maximum values (100th percentile) of pressure
coefficient are satisfactorily reproduced (Fig. 3.12, bottom left
panel), despite some local overestimations and a noisy time evolu-
tion on the right (R) side of the wedge. This is due to the relevant
SPH truncation errors recorded between t = 0.362 s and t = 0.367 s,
which affect the very 100th percentile of the Cp particle values dur-
ing this limited period.

Finally, an example of the field of the pressure coefficient is
shown in Fig. 3.12(bottom right panel). At this time, the vertex of
the left side begins to impact the water pool. The spatial evolution
of Cp is regular at boundaries and avoids penetrations of fluid par-
ticle into the solid body (coloured in semitransparency in Fig. 3.12).

3.5. Preliminary test: multiple interactions (3D)

The numerical model has been qualitatively tested over a
simple 3D test case involving two bodies, which simultaneously
interact with each other, several boundaries and a water front.

This test case is performed just to preliminary check the simul-
taneous behaviour of all the interaction terms introduced in
Sections 2.3 and 2.4 and to further confirm that the fluid/body par-
ticles do not cross the body–body, fluid–body and body–boundary
interfaces (to guarantee no mass penetration). Here we use
ng positions of the bodies. Superior rows: 3D view. Inferior rows: lateral view (only



Fig. 3.14. Dam break with body transport. Time sequence of the field of the absolute value of the normalized velocity. Left column: lateral view. Right column: plan view.
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Fig. 3.15. Dam break with body transport. Graphical comparisons of the body trajectory. Left column: SPH model. Right column: experiment (red circles highlight the
position of the body). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dx = 0.005 m, the tank is 0.200 � 0.200 � 0.100 m3, dx/dxs = 2.0,
qs=q ¼ 0:5. The bodies are cubes of length 0.050 m.

Fig. 3.13 shows the time evolution of the phenomenon (fluid
particles are coloured according to the pressure levels). Initially,
hydrostatic conditions are imposed. In the superior rows, we can
appreciate the general features of the simulation (3D view). In
the inferior rows, we just show the very few fluid particles
which temporarily lie in a small slice at the centre of the domain
(at y around 0.1 m). This allows checking the relative positions
of fluid and body particles, which are instead all plotted. When
the gate suddenly lifts, simulating a sort of dam break event,
the water front impacts the inferior body (‘‘body 1’’), which
impinges and pushes the superior solid (‘‘body 2’’) upward and
towards the water front (t = 0.120 s). At the same time, ‘‘body
1’’ remains confined by the lateral wall and begins to lift under
the hydrodynamic pressure forces. ‘‘body 2’’ describes a para-
bolic trajectory in air (t = 0.160 s) and plunges into the water
pool (t = 0.240 s). At later times (t = 1.280 s), the dynamics is
slower and both the bodies begin to tend to an equilibrium posi-
tion with their centre of mass closer to the free surface. The
whole sequence shows that, still at the rough resolution here
deliberately assumed, the non-permeability of solid bodies to
fluid particles is guaranteed, as well as no body particle crosses
any body–body or body–boundary interface. These are necessary
conditions to be satisfied, before proceeding to further and more
complex investigations (Sections 3.6 and 3.7). Finally, some
apparently isolated particles are visible in this sequence,
together with some pressure anomalies. They are related to the
rough resolution here imposed (to eventually stress the model
errors), and to the particular way we visualize fluid particles
on the inferior rows of Fig. 3.13.
Fig. 3.16. Dam break with body transport: validations over experimental values. Top left:
evolution of the height of the body barycentre. Bottom: time evolution of the free surfa
3.6. Dam break with body transport (3D)

The SPH model of Section 2 is here validated on a 3D experi-
mental dam break event, which involves the transport of a floating
body and the interactions with two fixed obstacles, a mobile gate
(representing a dam) and fixed walls.

The experimental tests have been carried out during this study
in the Hydraulics Laboratory of Basilicata University, on a tilting
channel characterized by a rectangular cross section of 0.5 m in
width and 0.6 m in height. The main structure of the channel is
totally in steel, while the lateral walls are in transparent glass
and the floor of the channel is in bakelite [56]. The flow inside
the channel is derived by a water reservoir. An automatic mecha-
nism opens the gate so quickly to obtain an event as possible sim-
ilar to a dam-break.

The experiment provides some measurements of the body tra-
jectory and free surface levels close to the two fixed obstacles,
evaluated using an image analysis of Charge Coupled Device
(CCD) cameras set on acquisition frequency of 24 fps, which allows
a 3D validation of the model. Such cameras are located at different
points of view thanks to a stainless steel modular system fixed to
the channel structure. The experimental set-up represents the evo-
lution of a dam break front as resulting from a regular
(non-instantaneous) lifting of a gate, which initially confines the
water reservoir. Further, this experimental configuration is more
complex than others available in literature (e.g. [57,58]), because
it represents the transport of a floating body and considers the
presence of more than one fixed obstacle.

The gate begins to lift at t = t0 = 2.00 s, with a uniform vertical
velocity w = 0.11 m/s until t = 5.00 s, when it stops. The maximum
value of the numerical acceleration was around 4–8 g, which still
time evolution of the x-coordinate of the centre of mass of the body. Top right: time
ce height (h) at the up-flow faces of obstacles 1 (up-flow) and 2 (down-flow).
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remains under the threshold (10 g) we impose to avoid (2.21) pro-
viding an unreliable estimation of the body particle pressure. We
set dx/dxs = 5/3, with dx = 0.0125 m. The estimated parameters
are normalized assuming the velocity scale

ffiffiffiffiffiffiffiffiffi
2gH

p
= 2.646 s. The

domain and the water reservoir dimensions are 3.500 � 0.500 �
0.500 m3 and 0.500 � 0.500 � 0.350 m3, respectively (Fig. 3.14,
top left panel). The dimension of each obstacle is 0.150 �
0.150 � 0.750 m3. The first one (‘‘obstacle 1’’) is 2.5 m distant from
the left boundary of the domain. The same distance measures
2.950 m for the down-flow obstacle (‘‘obstacle 2’’). Both are
0.060 m far from their closets vertical wall boundary. The trans-
ported body is a cube with side 0.054 m and mass mB = 0.073 kg
(qs = 464 kg/m3). The body is initially at rest and its centre of mass
is located 2.532 m far from the left boundary of the reservoir,
0.313 m from the right wall and 0.027 m from the bottom, where
the body lies on. We prefer to optimize the initial position of the
body by displacing of a very little quantity (smaller than the spatial
resolution of the model) its initial y-coordinate, in order to provide
the best initial conditions to the body dynamics, without deterio-
rating the model resolution. The gate is also modelled as a numer-
ical body (not a frontier), but its kinematics is imposed. This means
that its influence on the fluid domain fields is estimated according
to the formulations described in Section 2.3. The gate size is
Fig. 3.17. Dam break with body transport. Field

Fig. 3.18. Dam break with body transport: lateral view of the up-flow region of the doma
the absolute value of the normalized velocity (body particles are coloured in semitransp
reader is referred to the web version of this article.)

Fig. 3.19. Dam break with body transport. Details of the field of the press
0.0376 � 0.500 � 0.400 m3. Free surface is monitored on the
up-wind faces of both the fixed obstacles.

Fig. 3.14 reports a time sequence of the field of the normalized
velocity (left column: lateral view; right column: plan view). The
water front impacts the upwind obstacle and moves upwards its
upwind face. At the same time it transports the body down-flow,
lifting it from the bottom (t = 3.250 s). The body then impacts the
down-flow obstacle (t = 3.40 s) and bounces backward (t = 3.50 s)
lifting up in air. It then falls down into water and is transported
by the vortex in the recirculation zone of ‘‘obstacle 2’’. At around
t = 4.00 s the body is deviated laterally, while the faster water front
has reached the down-flow boundary of the domain and, simulta-
neously, two reflected surface waves move up-flow from each of
the fixed obstacles they come from. At around t = 4.0 s, a first cavity
zone is clearly detected in the wake of the ‘‘obstacle 1’’ (as also
shown in Fig. 3.17). The wake of the down-flow obstacle develops
later and interacts with the down-flow frontier of the domain.
These cavity zones will be rapidly filled by both the water mass
of the rest of the first water front and the surface wave, as it is
reflected by the down-flow boundary (t = 4.35 s). The transported
body now overpasses the upwind face of the downwind obstacle
and remains in a stagnation zone close to the downwind frontier.
At t = 5.60 s a single front wave moves towards the up-flow
s of the vector of the normalized velocity.

in. Left: field of the pressure coefficient (both fluid and body particles). Right: field of
arent black). (For interpretation of the references to colour in this figure legend, the

ure coefficient in the downwind region of the domain (lateral view).
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frontier. The body is slowly transported by the flow far from the
down-flow boundary, while the surface wave impacts the
up-flow frontier and a second reflected wave is there generated,
just few instants before t = 9.5 s.

Fig. 3.19 shows some examples of the fields of the pressure
coefficient in the down-flow region of the domain (lateral view).
The detailed images underline the main features of the breaking
Fig. 3.20. Demonstrative test case. Dam break with simultaneous transport of 9 solid bo
respectively. Fluid particles are coloured according to their absolute value of velocity;
references to colour in this figure legend, the reader is referred to the web version of th
waves, occurring at 3.75 s and 4.00 s, after the water front is
reflected by the fixed obstacles.

Fig. 3.15 provides a graphical comparison between the numerical
and the experimental positions of the body. It approaches the obsta-
cles (t = 3.25 s), impinges on it (t = 3.50 s), is transported within the
recirculation region up-flow the obstacle (t = 3.75 s), deviates later-
ally (t = 4.00 s) and begins to overpass it (t = 4.35 s). The model can
dies. Sequence of snapshots with 3D, front, top and lateral view (from left to right),
body particles refer to their body identification number. (For interpretation of the
is article.)
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correctly reproduce the body trajectory, even if the body dynamics is
strongly non-linear in the recirculation zone of ‘‘obstacle 2’’.

Fig. 3.16 provides quantitative comparisons between the
numerical results and the experimental data, in terms of body tra-
jectory and free surface levels. Time evolution of the x-component
of the centre of mass position is well reproduced by the model
(Fig. 3.16, top left). The body begins to move at around 3.2 s and
impacts the second obstacle. During the period t = 3.4–4.0 s the
body is entrained in the recirculation region. It then deviates later-
ally and reaches a zone at low velocities, close to the down-flow
frontier. At around t = 5.5 s it begins to move backward, trans-
ported by the main flow, while a reflected front wave move
towards the gate. The model well reproduces the body trajectory
along the x-axis. Nevertheless, some minor errors are still detect-
able, as the numerical body begins to move back a little earlier.

The experimental data concerning the vertical position of the
body are reported in Fig. 3.16(top right panel). Their experimental
errors are not negligible, as shown in the figure. Nevertheless, we
can perform some quantitative comparisons and the numerical
results well agree with the experimental data. The vertical position
of the floating body is normally related to the position of the free
surface at those horizontal coordinates. However, just after the
first impact, the body moves in air (at around t = 3.50 s) after its
impact against the down-flow obstacle. We notice that when the
body moves backward the main flow around it is characterized
by a decreasing free surface height, as water is filling the upper
part of the domain, where the water levels are lower (Fig. 3.16).

The numerical estimations of the free surface levels on the
up-flow faces of the obstacles are provided in Fig. 3.16(bottom
panel). They are in good agreement with the experimental data, even
if some underestimations are detected, especially for ‘‘obstacle 1’’.

Fig. 3.18 finally provides some details of the phenomenon in the
region around the gate, while it is lifting up and still interacting
with the water reservoir. We have an example of how the body
particle pressure is reconstructed according to (2.21), and well
matches the fluid field at the body surface (left image). On the right
side of Fig. 3.18(field of the normalized velocity), we can appreciate
that there is no penetration of fluid particles into the solid gate,
whose body particles are coloured in semitransparent black (we
would immediately appreciate any eventual fluid particle pene-
trating into the gate).

In this context, we notice that the transport of a solid body dur-
ing a flood event is a highly non-linear phenomenon. In this frame,
a statistical approach (based on the perturbations of the initial
and/or boundary conditions) could provide more information and
estimate the most probable body trajectories, simultaneously tak-
ing into account both the incertitude related to the boundary/ini-
tial conditions and the model accuracy, which is still dependent
on the SPH spatial resolution due to the chaotic features of the phe-
nomenon. Although a statistical approach is needed, this reference
simulation still refers to the finest resolution available. The results
are presented as expected values of the monitored parameters,
whose probability density functions could be further quantified
also in terms of statistical moments higher than the mean.

Finally, this test case provides a validation of the presented
model in representing a controlled dam break event, with the 3D
transport of a cubic floating body and multiple impacts against
fixed obstacles and frontiers.

3.7. Demonstrative test case: multiple body transport (3D)

This test case considers a configuration analogous to
Section 3.6, but dealing with 9 solid bodies and introducing the fol-
lowing minor modifications. The phenomenon lasts 1.00 s, the
frontiers are 1.25 m high, the dam break is instantaneous (without
mobile gate); the fixed obstacles are removed; the domain length
is 1.5 m. 9 bodies together represent a sheet lying on the channel
bottom, with xCM = 1.000 m and yCM = 0.250 m. The sheet is com-
posed of 9 juxtaposed cubes of side 0.054 m. Each body mass is
mB = 0.6 kg, but the 9th body, which has a doubled mass. Fluid par-
ticles are discretized with dx = 0.0075 m.

Fig. 3.20 shows a sequence of snapshots of the phenomenon
from several points of view. Fluid particles are coloured according
to their absolute value of velocity, while body particles refer to the
body identification number.

This complex 3D case is simply considered as a demonstrative
test to preliminarily assess the model potentials in managing a rel-
evant number of solid bodies, transported during a flood event.

4. Conclusions

This study has developed and validated a Smoothed Particle
Hydrodynamics scheme for the 3D transport of rigid solids in free
surface flows. It solves the balance equations for the 3D dynamics
of rigid bodies, using the SPH formalism. The scheme is coupled
to an existing Weakly Compressible (WC)-SPH basic model, which
uses the ‘‘semi-analytic approach’’ for the fluid–boundary treat-
ment [33]. This study has implemented fluid–body and solid–solid
multiple coupling terms in the fluid dynamics SPH equations for
both the main flow and the transported bodies. The fluid–body
interactions are modelled according to the boundary treatment of
Adami et al. [32], which validated it for 2D frontiers with an
imposed kinematics. Here, this treatment is implemented and
adapted to handle free-slip conditions and provide validations for
3D body transport in free surface flows. The solid–solid interactions
(body–body and body–boundary impingements) are modelled
according to the SPH boundary force particles of [1]. This formula-
tion originally refers to impacts between single particles at high
velocities. This study has implemented and extended this technique
to deal with low velocity impingements of entire solid bodies.

The new numerical model is tested against a sequence of case
studies, which are preliminary validations for fluid–body, body–
body and body–boundary impacts (both at high and low velocities,
or with multiple interactions), as well as a sequence of four water
entries of falling solid wedges (2D). The numerical model is then
validated on a complex 3D experimental test case, still realized
during this study. This represents a 3D dam break event, which
involves fixed obstacles, a mobile gate/dam and a transported
floating body. Furthermore, we show the potentials of the model
in a demonstrative test case: a dam break event with the transport
of 9 solid bodies. We could then simultaneously test in 3D the
fluid–solid and solid–solid interactions, whose modelling is pecu-
liar of the numerical solution here presented. These validations,
performed by comparisons with several experimental, theoretical
and URANS and other SPH numerical results, show the reliability
of the model in reproducing the 3D transport of rigid bodies, driven
by free surface flows, such as floods or surface waves interacting
with floating or mobile structures.
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